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1 Introduction

As applied to the image-processing tasks required for automatic/aided
target recognition (ATR), mathematical morphology (Giardina and
Doughtery, 1988; Serra, 1982; Matheron, 1975) is a theory of certain
transformations of a set of functions that represent images. These
transformations, which are designed to extract geometrical shape in-
formation from the images they operate on, are called morphological
transformations. The first task of the science or theory of morpholog-
ical image processing (MIP) is therefore twofold: to choose a set of
functions for the representational role and then define the morphologi-
cal transformations of these functions.

This report treats this primary task in detail for the special case of
binary images. For the more general case of greyscale images, MIP
chooses the extended real valued (ERV) upper semicontinuous (USC)
functions of two or more real variables to play the representational role.
The reasons for this choice are more appropriately considered in treat-
ing the general case and will not be dealt with here. Suffice it to say
that such functions are adequate for the greyscale images encountered
in practice (which show occasional abrupt jumps against a background
of general continuity) and have certain convenient technical properties.
This report accordingly focuses on the USC functions whose only values
are 0 and 1, and with good reason: Binary-valued USC functions are
equivalent to the closed subsets of the independent variable space or im-
age field. Indeed a binary-valued USC function f determines a unique
closed subset F of the image field S through F =_ {x E S : f(x) = 1};
conversely, such a closed set determines a unique binary USC function
f through f(x) = 1 for all x E F and = 0 otherwise. Because of this
equivalence, the focus on binary f allows us to concentrate directly on
geometrical shapes (the closed subsets of S) and develop a theory to
extract information about them. At the level of binary f, then, MIP is
closed-set morphology.

The transformations that can probe binary images for shape infor-
mation have been thoroughly studied by Matheron (1975) and Serra
(1982). The elementary forms of these transformations are known as
hit-miss transformations and erosions; in fact, erosions are a species of
hit-miss transformation.

A hit-miss transformation is a set-to-set mapping (set transformation)
characterized by two fixed subsets, A and B, of the image field, where
one of them (say B) includes the other; that is, A C B. It acts as
follows. If the binary image that is operated on contains a set F that
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can be translated in the image field so as to include A and be included
in B (i.e., if there is a translation vector x such that A C F + x C B),
then the transformation will output a point at -x. If there is no such
F, then the transformation will output nothing (i.e., the output set will
be empty). Evidently, the more nearly identical A and B are in size
and shape to the size and shape of a given set F, the more refined an F-
recognizer the corresponding hit-miss transformation will be. Moreover,
every translationally invariant (TI) set transformation is a union (i.e., a
logical ORing) of hit-miss transformations (Banon and Barrera, 1991);
hence every TI set transformation interacts in the way indicated with
the shape/size content of a binary image to produce its output. When
the including set B is the entire image field, the corresponding hit-
miss transformation degenerates into one characterized by the single
set A. In this case the transformation is called erosion by A. Erosions
eliminate all sets from a binary image that are either too small or too
misshaped relative to A to include A; the remaining sets are reduced in
size (eroded) by an amount that depends roughly on the size of A and
in more detail on the shape and scale of A relative to the shape and
scale of the set eroded. Erosions are the elementary building blocks of
the TI set transformations that preserve set inclusion relations. Such
transformations are called increasing or order preserving and include
the so-called morphological filters; they can always be expressed as a
union of erosions (Matheron, 1975).

The TI set transformations of the image field accordingly form a class
of (plainly nonlinear) transformations that act on the shape/size con-
tent of binary images. Closed-set morphology results when appropriate
topological requirements are imposed on this class.

Closed-set morphology is both an algebraic and a topological theory.
Its algebraic operations are of three kinds: (1) the set-theoretical op-
erations of union (U) and intersection (n), (2) the usual closure and
boundary-extraction operations that arise from the intrinsic metrical
character of the image field, and (3) what I call the Minkowski opera-
tions. The latter, which depend on the vector structure of the image
field, are Minkowski addition (9), Minkowski subtraction (e), and mul-
tiplication by a real scalar (homothesis). Minkowski addition, which is
simply pointwise set addition, is essentially the same as dilation (the
operation dual to erosion); likewise, erosion and Minkowski subtraction
are essentially the same. The topological aspect of closed-set morphol-
ogy operates at two distinct levels. The lower level is due to the obvious
fact that the closed subsets of the image field, which are the elementary
objects of interest at the higher level, have their own intrinsic metric-
topological character. Besides this, however, it is necessary to define
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a notion of convergence of a sequence of closed sets. This notion gives
continuity properties to the algebraic operations and is the source of
the higher level topology known as Matheron's hit-miss topology. It is
much less well-known than the algebraic aspect of the theory, because
the general topology (Kelley, 1955) needed for its appreciation is unfa-
miliar to many investigators. As an aid for the reader, I have included
an appendix that summarizes the required background in general topol-
ogy. Further details can be found in Kelley (1955).

The need for a high-level topology arises from the way morphological
transformations must behave to be of practical utility. Two images of
the same scene formed with the same imaging apparatus will gener-
ally differ because of differing stochastic components. In applying an
arbitrary transformation to such images, it may happen that a large
difference in the output results when there is not a large stochastic
difference in the inputs. Such a transformation should clearly not be
admitted to the class of "morphological transformations." It is indeed
often the case in applied mathematics that one has a transformation
A : u m) v and wants to ensure that a "small" perturbation in u
will not produce a "large" or uncontrolled perturbation in the result
v = A(u). Such assurances are typically provided by imposing some
degree of continuity on A, and this requires a transformation topology.

In classical applications of mathematics, continuity is usually treated as
a metric space concept: that is, in terms of a metric such as the familiar
euclidean metric or Hilbert-space norm. Topology is the most general
theory of mathematical continuity, however; it is a generalization of
metric-space theory. If the topology appropriate to a given application
is metrizable and if the associated metric function is known explicitly, a
direct confrontation with topology can be avoided. This is usually the
case. In mathematical morphology, however, despite the metrizability
of the relevant topologies, the associated metrics are in a practical sense
unknown; here the confrontation cannot be avoided.

The most important use of Matheron's hit-miss topology in morphol-
ogy is to make the solution of stochastic optimization problems possible
(at least in principle). The relevance of this capability to ATR can be
seen as follows. The goal of ATR is to optimally identify the presence
or absence of certain important objects in imagery that includes all
sorts of other things (background clutter and objects of no interest) in
an essentially stochastic way. For probability theory to be effectively
applied to the optimization problem thus posed, it would be helpful
if morphology theory had a concept of a random closed set or binary
image: that is, if we had a theory of random binary images and noise

3



compatible with the morphological transformation theory. Matheron
(1975) has in fact given us this; he introduced his topology into mor-
phology mainly to arrive at a useful concept of a random closed set.
(Despite its importance, however, the stochastic side of morphology is
not further discussed herein. I mention it nnly for completeness.)

This report includes both original material and a review of the work
of others. Section 2 outlines several mathematical concepts (topological
and compact ordered spaces, upper and lower topologies, etc) that per-
mit a unified treatment of the various semicontinuity concepts needed
in ma.thematical morphology. This approach leads to valuable per-
spectives and economy of thought and to my knowledge has not been
previously employed by morphology theorists. I use the basic ideas of
Nachbin (1965) and Birkhoff (1948) concerning when a partial ordering
of a set that has a topology is compatibile with that topology. By pur-
suing Nachbin's concept of a topological ordered space (TO-space), I
arrive at a definition of what I call an order resolvable TO-space. This
abstraction makes it possible to unify the treatment of semicontinuity.

Section 3 gives an in-depth review of the basic concepts of closed-set
morphology. Here I give a more thorough treatment than is available
elsewhere of the several limit concepts used in morphology. I also point
out some interesting links with the basic work of Hausdorff (1927) and
Frink (1942) on the limits of nets and sequences of sets. In discussing
the continuity properties of the algebraic operations U, n, (, E), etc, I
again provide a more thorough treatment than is available elsewhere,
especially for the Minkowski operations, which are taken up in section 4.
Section 5 discusses the morphological transformation and transforma-
tion space theory of closed-set morphology. Here I incorporate the
relevant contributions of Matheron (1975) and Maragos (1989, 1985),
as well as the recent important work of Banon and Barrera (1991); I
also indicate the poset/lattice algebraic aspects of the morphological
transformation space and somewhat generalize Matheron's kernel the-
ory to apply to general rather than only increasing transformations. I
conclude section 5 with a description of a novel representation of the
morphological transformations that uses countable closed-set bases for
Matheron's topology. Section 6 concludes the report with the general
outlines of the next stage of morphology's image processing theory.
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2 Ordered Topology

The spaces of interest in mathematical morphology are generally closed-
set classes having the hit-miss topology introduced by Matheron (1975).
Such spaces are both partially ordered sets (Def. 2.1)-posets (ordered
by the subset relation)-and topological spaces (Def. A.1).

Nachbin (1965) has framed a concept of the compatibility of the topol-
ogy of a poset and its ordering relation (Def. 2.2). (There are sev-
eral different definitions of order-topological compatibility; Nachbin's
is only one of them.) When this compatibility occurs, he calls the over-
all structure a topological ordered space (TO-space); when the topology
in question is compact, he calls a TO-space a compact ordered space.

For a compact ordered space, one can give a general definition of the
upper and lower topologies into which the space's topology resolves.
Based on these notions one can then formulate a very general definition
of the upper and lower semicontinuity of mappings into the space. This
abstract framework is quite convenient for mathematical morphology
because Matheron's hit-miss topology is both compact and compati-
ble in Nachbin's sense with the ordering relation C, and furthermore
because the abstract definition embraces the wide variety of semiconti-
nuity types encountered in mathematical morphology. Hence, a more
systematic account of the subject is made possible. I begin by outlining
Nachbin's theory and develop it further where needed.

2.1 Topological and Compact Ordered Spaces

A binary relation r in a set X is a set of ordered pairs of elements from
X. If x, y E X and (x, y) E r, we write xry. If xrx for all x E X, then
r is called reflexive. If V x, y, z E X we have xry and yrz === xrz,
then r is called transitive. Note that < and C are, respectively, binary
relations in the set of real numbers (R) and in any class of subsets of a
given set. These relations share other properties that may be abstracted
to give the concept of a poset.

Definition 2.1 A poset (X, -) is a set X of elements x, y, z, ... in
which a reflexive and transitive binary relation -< is defined such that
whenever x -< y and y -ý x, it follows that x = y. If (X, - is a poset,
then -< is called a partial ordering of X (more simply an ordering) and
the set {(x, y) E X x X : x -< y} is called the graph of - on X.

Thus (R, <) and (A, C) (where A is a class of subsets of a given set) are
posets. The poset (R, •<) is totally ordered because V x, y E R, either
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x <_ y or y _< x. For (A, C), this need not be so; hence the general term
partially ordered set.

Definition 2.2 Let (X, 5) be a poset and let r be a topology on X. If
the graph of _ on X is a closed subset of the product space X x X,
we say that -_ is a closed order in X and call (X,Tr, 5) a topological
ordered space or a TO-space. A TO-space (X,Tr, 5) is called a (locally)
compact ordered space if (X, r) is (locally) compact.

A topology is a collection of subsets designated as open (Def. A.1);
the closed sets are the complements of the open sets. For the defini-
tions of product spaces and compactness, see the appendix (A.12-A. 13).
(Locally) compact ordered space is abbreviated by (L)CO-space.

Definition 2.3 Let (X, 5) be a poset and let A be a subset of X. If
x E A and y -ý x (x • y) ==* y E A, then A is called a decreasing
(increasing) set. If y E A whenever x -< y "• z, x E A, and z E A, then
A is called a convex set.

Remark 2.1 X and 0 (the empty set) are increasing, decreasing, and
convex. Unions and intersections of increasing (decreasing) sets are
increasing (decreasing). Intersections of convex sets are convex.

A base for a topology is a collection of open sets such that every open set
is a union of sets from the collection. A subbase is a collection of open
sets such that every open set is a union of finite intersections of sets
from the collection. A local base at x E X is a collection of open sets
containing x such that every open set containing x contains a member
of the collection. A topological space (X, 7-) is called first countable if it
has a countable local base at every x E X; it is called second countable if
it has a countable base. A topological space is called Hausdorff if every
pair of distinct points in it have disjoint open neighborhoods (Def. A.3).

Definition 2.4 A TO-space (X, r, -<) is called locally convex if it has
a convex local base at each x E X.

Theorem 2.1 (Nachbin) Every TO-space is Hausdorff and every CO-
space is locally convex.

Theorem 2.2 Let (X, :ý) be a poset and let r be a first countable Haus-
dorff topology on X. Then (X,r, -) is a TO-space if and only if xi --+ x
in X, yi --- y in X, and xi 5 y1 for all i together imply that x -< y.

6



Proof. It must be shown that the proposition x1 - x in X, yj - y
in X, and x, _-< y, V i ==* x 5 y holds if and only if the graph of
-< is closed in the product space X x X. From general topology
we know that the graph in question, say G, is closed if and only if
every convergent sequence in G has its limit in G. By definition,
a sequence {(xi, ,y)} in X x X is in the graph of • if and only
if xj -< yj for all i. Moreover { (xi, yi) } converges to (x, y) in the
product space X x X if and only if xi -- x in X and yj --* y in X.
Since (X, y) E G if and only if x -< y, the proof is complete.

Remark 2.2 Let (X, -r, -) be a TO-space, let A be a subset of X, and
let TrA denote the relative topology of A in (X, r). Then (A, 5) is a
poset and (A, rA, 5) is a TO-space; moreover, if A is a compact subset
of X, then (A,TrA, 5) is a CO-space.

See section A.11 for relative topologies. If (X,-r, -) is a TO-space, we
indicate that a subset A of X is being considered as a TO-space relative
to r and -< by calling A a TO-subspace of (X, r, 5).

Remark 2.3 If (X, r, 5) is a CO-space and A is a subset of X, then
the TO-subspace A is a CO-space if and only if A is closed in (X, r).

When (X, -) is also a lattice (Birkhoff, 1948) (i.e., when x A y =
inf{x,y} and x V y = sup{x,y} exist in X for all x and y in X), it
is convenient to have some special terminology.

Definition 2.5 Let (X, A, v) be a lattice and let -< denote its induced
ordering (i.e., the ordering defined by x -< y xAy = x). if (XT, 0)
is a TO-space, we call (X, 7, A, V) a closed-order lattice (CO-lattice). A
CO-lattice whose topology is (locally) compact will be called a (locally)
compact closed-order lattice.

A one-to-one mapping of a TO-space (CO-lattice) onto another is called
a TO-space (CO-iattice) isomorphism if the mapping is both a poset
(lattice) isomorphism (Birkhoff, 1948) and a homeomorphism (see
Def. A.24). Similar definitions apply to (locally) compact ordered
spaces and (locally) compact CO-lattices.
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2.2 Upper and Lower Topologies and Semicontinuity

Remark 2.4 If (X, r, -_) is a TO-space, then the class r,, of open de-
creasing subsets of X and the class re of open increasing subsets of X
are topologies on X. We call them the decreasing and increasing topolo-
gies, respectively, of (X, r, -_).

If (X, r, -) is a TO-space, it is generally not true that r is generated
by r U re; i.e., -r is not the smallest topology on X that contains rU r1 .
This deficiency is remedied when (X, r, _-) is a CO-space.

Theorem 2.3 (Nachbin) If (X, T, -_) is a compact ordered space, then
r, Ure is a subbase for r.

For generated topologies and subbases, see sections A. 1 and A.8.

Definition 2.6 Let (X, r, -) be a TO-space and let A be a subset of X.
Regarding A as a TO-subspace of (X, 7T, -<), we can define the relative
decreasing and increasing topologies ru (A) and re (A) of A in (X,T, _)
in the usual way by

Tb(A).={AnG:GETru} and re(A)_={AnG:GEre}.

Note that r,,(A) and r1(A) are, respectively, the classes of open decreas-
ing and open increasing subsets of the TO-subspace A; that is, they are
the decreasing and increasing topologies of the TO-space (A, rA, __) in
accordance with Remark 2.4. We therefore have the following corollary
to Theorem 2.3.

Corollary 2.1 If (X,r, -) is a CO-space and A is a subset of X, then
ru(A) U re(A) is a subbase for rA.

Definition 2.7 A TO-space (X, r, -<) whose increasing and decreasing

topologies together form a subbase for r will be called order resolvable.

Thus a CO-space and a TO-subspace of CO-space are order resolvable.

Definition 2.8 If (X, r, -_) is an order-resolvable TO-space, then two
topologies IL and A on X, such that 1iUA is a subbase forr, piC r,,, and
A C rTi, will be called upper and lower topologies for (X,Tr, -ý). Thus r,
and re are the maximal upper and lower topologies for (X, r, .).
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Remark 2.5 If X and Y are TO-spaces, then a TO-space isomor-
phism of X onto Y maps the open increasing (decreasing) subsets of X
onto the open increasing (decreasing) subsets of Y; this isomorphism is
hence a homeomorphism relative to the maximal upper (lower) topolo-
gies of X and Y, and if X is order resolvable, then so is Y.

We can now define what is generally meant in this setting by a USC
(LSC) function or mapping; see Def. A.24.

Definition 2.9 Let Q be a topological space, let X be an order resolv-
able TO-space, let 1L and A be upper and lower topologies for X, let w
be a point in Q, and let A map 1 to X. Then A is pL-USC (A-LSC) [at
w] if A is continuous [at w] with respect to pI (A).

Theorem 2.4 Let Q be a topological space, let X be an order resolvable
TO-space, let ji and A be upper and lower topologies for X, let w be a
point in 11, and let A map Q to X. Then

I. A is tt-USC (A-LSC) = A is p-USC (A-LSC) at every w.

2. A is continuous [at w] = A is both A-USC and A-LSC [at w].

2.3 Familiar Examples

The following are commonplace but useful' examples of the foregoing
abstractions. Section 3 addresses a centrally important example in
mathematical morphology proper.

First consider the posets formed by the real and extended real numbers,
each with the ordering relation <. Let R denote the set of real numbers,
let 0 denote the empty subset of R, and consider the collections it
{R, 0, (-oo, t) : t E R) and A - {R, 0, (t, oo) : t E )}.

Remark 2.6 The collections it and A are topologies on R, j U A is a
subbase for the usual topology r of N, (R, T, <) is an LCO-space, and
p2 and A are its maximal upper and lower topologies.

Let R(') denote the extended real numbers, let 0 denote the empty
subset of R('), and consider the collections

,- {(e), 0, [-o, t):tER(e)} and Ae= { ,(e)0,(t,o] :tER e)}.
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Remark 2.7 The collections p, and A. are topologies on We), p U
is a subbase for the usual topology re of ?(W), (3(e), Te, _) is a CO-space,
and p. and A. are its maximal upper and lower topologies.

Remark 2.8 ((0),,r 6,inf, sup) is a complete compact CO-lattice and
(M, r, in.", sup) is a conditionally complete locally compact CO-lattice.

For poset/lattice properties such as completeness and conditional com-
pleteness, see Birkhoff (1948). Next, consider the semicontinuity of
mappings from a topological space X to the CO-space (?(e), Te, _). By
direct application of the general definition, we obtain the following:

Definition 2.10 If f is ERV on a topological space X, then

1. f is USC, * {x E X: f(x) < t} is open in X for all t E W().
2. f is LSC = {x E X: f(x) > t} is open in X for all t R(e).

This and the next definition yield (trivially) an alternative characteri-
zation in terms of f's cross sections.

Definition 2.11 If t E R(') and f is ERV on X, then we call the set
Xt(f) = {x E X : f(x) ? t} the horizontal cross section of f at t and
also use the notation X (f) = {x E X : f(x) > t}.

Theorem 2.5 If f is ERV on a topological space X, then f is USC if
and only if Xt(f) is closed in X for all t E R('), and f is LSC if and
only if Xj- (f) is open in X for all t E R(e).

Theorem 2.5 turns out to be quite useful for the more general morphol-
ogy of ERV USC functions (greyscale morphology) and is particularly
useful in treating the well-known threshold decomposition method of
Serra (1982). When X is a first countable Hausdorff space, the theo-
rem becomes the following:

Theorem 2.6 If f is an ERV function on a first countable Hausdorff
space X, then f is USC if and only if f(x) > lim sup f(xj) V x E X and
V {x,} in X with limit x, and f is LSC if and only if f(x) _< liminf f(xi)
V x E X and V {xj} in X with limit x.

This result comes up again and again in different guises and settings
as a criterion for semicontinuity. I refer to it and its relatives as the
usual semicontinuity criterion. Finally, many authors limit the ERV
USC (LSC) functions to those that do not take on the value oo (-oo).
These may be considered special cases of the definition I am using.
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3 Morphospace

For a less familiar example of the foregoing abstractions, I turn to
mathematical morphology proper. The basic ingredient of Matheron's
morphology theory is a structure that I call a morphospace; it is defined
as follows. Let S be an LCS space (i.e., a locally compact, second
countable Hausdorff space) and let F(S), G(S), and K(S) respectively
denote the classes of closed, open, and compact subsets of S.

Remark 3.1 (F(S), n, u) is a complete distributive lattice, and its in-
duced ordering is C.

The lattice (F(S), n, U) becomes a morphospace when it is given Math-
eron's hit-miss topology.

3.1 Hit-Miss Topology

If K E K(S) and G E G(S), we can define the collections F' and FG
by F =- {FE F(S): FnK = 0} and Fc- {FE F(S): FfG00 }.
Indeed these notational conventions are used for arbitrary subsets K
and C of S. Let ic {FK : K E K(S)} and =_ {Fa: G E G(S)}.

Definition 3.1 The hit-miss topology -r of F(S) is the topology gener-
ated by x U 17; hence, K. U ql is a subbase for "r.

Note that the identities UFB, = FuB. and OFBG = FUBa hold for
any collection {B.} of subsets of S. On the other hand, F{B..) =
nFFB D FnrB and UFBO c Fno* are all that hold generally. With
these notations and facts, the typical finite intersection of sets from the
generating class n; U q has the form

FK1 n ... n FK7 n FcGf n ... nFc, = FKu'...uKK,- n FcG,...,c,,

where the nonnegative integers m and k may be zero but not simul-
taneously. Letting K, U ... U Km = K, Matheron uses the notation
FK,..., =FK n Thus if K is an arbitrary compact subset of
S and { GI, ... ,Gk} is an arbitrary (possibly empty) finite set of open
subsets of S, then the collection of sets of the form F K 0 is a base for
the hit-miss topology of F(S). Henceforth assume that F(S) is carrying
its hit-miss topology.
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Theorem 3.1 (Matheron) r is compact, second countable, and Haus-
dorff; hence, r is normal, regular, cand mettizable and F(S) has a count-
able dense subset.

The second part of this theorem is a consequence of several results
from general topology (Kelley, 1955): (1) compact Hausdorff spaces are
normal, (2) normal Hausdorff spaces are regular, and (3) regular second
countable spaces are equivalently metrizable and have a countable dense
subset. See section A.9.

Theorem 3.2 (Matheron) Let {E1} and {F1} be convergent sequences
in F(S) wfth limits E and F, respectively, and suppose that E, C F1
for all i. Then E C F.

Comparing this with Theorem 2.2 shows that C is a closed order in
F(S). Thus (F(S),r, C) is a CO-space and (F(S),'r, n, U) is a compact
CO-lattice. Note that r. (t7) consists entirely of decreasing (increasing)
sets, contains the universal collection F(S) (the empty collection 0),
and is closed under finite intersections (arbitrary unions). Even if we
append 0 to r and F(S) to i7, however, we will fail to convert either
into a topology on F(S) because r U 0 is not closed under arbitrary
unions and t7 U F(S) is not closed under finite intersections. However,
we do have the following.

Proposition 3.1 Let /i' = n U 0 and A' = 17 U F(S). Then ts' is
closed under finite intersections and is a base for the topology 1A that it
generates on F(S), X' is closed under arbitrary unions and is a subbase
for the topology A that it generates on F(S), and IA (A) consists entirely
of decreasing (increasing) r-open sets.

Proof. Note that A' is closed under finite intersections, so that for ,t' to
be a subbase is the same as for it to be a base. For a collection B of
subsets of a set X to be a base for the topology that it generates on
X, the following is sufficient: (a) for each x E X there is a member
of B that contains x and (b) B is closed under finite intersections.
Since js' is dosed under finite intersections, the proposition M' is
a base for the topology that it generates follows from S = FO and
the empty subset of S is compact. Likewise, the proposition A' is
a subbase for the topology that it generates is equivalent to the set
of finite intersections of sets from A' is a base for the topology that
it generates, and the truth of the latter is a direct consequence of
F(S) E A'. The rest is trivial.
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Clearly p U A is a subbase for the hit-miss topology of F(S), and it
follows that 1 and A are upper and lower topologies for (F(S),.r, C).
The question raised by Proposition 3.1, however, is whether p (A) is
strictly weakerthan the decreasing (increasing) topology of (F(S), r, C);
i.e., whether I (A) contains all the decreasing (increasing) r-open sets.
I leave this question open.

I earlier referred to the morphospace (F(S),r, n, U) as the basic ingre-
dient of Matheron's morphology. Associated with F(S), however, are
the two other classes G(S) and K(S) of topologically important sub-
sets of S, and it would be more correct to say that this trio of spaces
is the basic structure underlying Matheron's morphology. The topo-
logical and lattice-algebraic aspects of G(S) and K(S) therefore merit
consideration (see next section).

3.2 The Dual and Myopic Topologies

Since the complementation operation in S (denoted .c) maps F(S) one-
to-one onto G(S), we can obtain a natural topology r* for G(S) (called
the dual topology) by requiring this mapping to be a homeomorphism.
If we let GA =_ {G E G(S): G D A} and GA = {G E G(S): G 0 A),
then the dual topology is generated by the collection

{GK: K E K(S)} U {G': C E G(S)}.

Proposition 3.2 (G(S), r*, C) is a CO-space, and (G(S), r*,fn,u)
is a compact CO-lattice.

Proof. By the definition of the dual topology, (G(S), -r*) is second
countable and Hausdorff. Theorem 2.2 therefore applies. Let {U,}
and {Vi} be convergent sequences in G(S) with the dual-topology
limits U and V, respectively, and suppose that U1 C Vi for all i.
Then Ui --- U' and V, --+ V' in the hit-miss topology of F(S) and
V1' C U• for all i. By Theorem 3.2 we see that VC C UC. Thus
U C V and the desired conclusion follows from Theorem 2.2 and
the fact that (G(S), r*) is compact.

Remark 3.2 (G(S), n, U) is a complete distributive lattice, and the
complementation mapping of F(S) onto G(S) is a dual-lattice isomor-
phism between (F(S), r, n, U) and (G(S), r*, n, u).

(G(S), *, n, u) is called the morphospace dual of (F(S), -r, n, u).
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Remark 3.3 If we let pA* and A* denote the topologies generated sub-
basically on G(S) by the collections {GG : G E G(S)} U G(S) and
{GK K E K(S)) U 0, respectively, it follows that IA* and A* are upper
and lower topologies for (G(S), r', C).

Note that A* = Ac and A* = p•c, where the complementation oper-
ation acts on the individual members of the collections respectively
comprising A and I. For instance, if we let A = {9 : 9 E A), then
AC = {Fc : F E 91 : 9 E A). The lattice-algebraic and topological
duality evident in the pair (F(S), G(S)) can be elaborated in the dual
mapping concept, defined as follows.

Definition 3.2 Let 9P = P(S) denote the class of all subsets of S. If I
is a mapping of F(S) (G(S)) into P, then we define the corresponding
dual mapping 'I* of G(S) (F(S)) into P' by %'*(A) = [%(Ac)]c; if 'P is
a mapping of F(S) x F(S) (G(S) x G(S)) into P, then we define the
dual mapping V* of G(S) x G(S) (F(S) x F(S)) into P by %P*(A,B) =
[%P(Ac, B')]c; and so on and likewise for the other products, mized or
otherwise, ofF(S) and G(S).

Since [Ac U B]c = A n B and [Ac n Bc¶c = A U B, we see, for instance,
that n (U) on XC x Y' is the mapping dual to U (n) on X x Y,
where X and Y each stand for either F(S) or G(S). Finally, note
that the dual mapping concept actually applies to any pair (L, L') of
dual-lattice isomorphic lattices. For instance, if %Y is a mapping of L
to itself and C denotes a dual-lattice isomorphism of L onto L', then
F'(a') _= C[I(C-1 (a'))] (a' E L') defines the mapping of L' to itself,
which is dual to IF relative to C. This observation is used in section 4
in connection with the fact that the lattice (P(S), n, u) is self-dual
under the complementation mapping.

Since K(S) C F(S), the relative hit-miss topology of K(S) in F(S)
seems a natural topology for K(S). When S is a compact space, there
is no difference between F(S) and K(S), and using the relative hit-
rciss topology of K(S) would also result in the coincidence of their
topologies. The hit-miss topology of K(S) is generally flawed, however,
by the facf that K(S) is neither a closed nor an open subset of F(S)
when the tv.,) are nat identical. Moreover, a stronger topology on K(S)
also coincides with the hit-miss topology when S is compact; this is the
so-called myopic topology, whose origin may be seen as follows.
Suppose that S is not compact but merely locally compact (as when
S = R, for example). Let us "compactify" S by means of the classical
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Alexandroff one-point compactification procedure (Royden, 1968). In
this procedure, we append a formal point w (called the point at infin-
ity) to S and define the topology of the new space S* = S U {w} by
taking a set in S* to be open when it is either an open subset of S or a
neighborhood of infinity: i.e., the complement of a compact subset of S.
With this definition, S* becomes a compact second-countable Hausdorff
space (and hence an LCS space), so that F(Ss) has a hit-miss topol-
ogy. With this topology, F(S*) can be expressed as a disjoint union of
the two subspaces F* = {F U {w} : F E F(S)} and K(S), which are
closed and open subspaces of F(S*), respectively. Moreover, the rela-
tive topology of F* in F(S*) is topologically equivalent to the hit-miss
topology of F(S) because the one-to-one mapping F U {w} i-. F of
F* onto F(S) is a homeomorphism. The relative topology v of K(S)
in F(S*) is called the myopic topology.

The myopic topology may be defined alternatively as the topology gen-
erated on K(S) by {KF: F E F(S)} U {K0 : G E G(S)}, where

KF {K E K(S) : K n F= 0}

and
Kc0  {K E K(S): K nlG 0# .

The following results summarize basic information about v and its
relation to the hit-miss topology of F(S); apart from Corollary 3.1,
they are due to Matheron (1975).

Theorem 3.3 (K(S),v) is an LCS space. If S is not a compact space,
then neither is (K(S),v), and v is strictly stronger than the relative
hit-miss topology of K(S). If IC is a v-compact subset of K(S), then
the relative hit-miss topology of IC and the relative myopic topology of K
coincide. A subset I of K(S) is v-compact if and only if K is closed in
F(S) and there exists a Ko E K(S) such that Ko D K for all K E K.

Corollary 3.1 (K(S), v, C) is • LCO-space, and (K(S), v, n, u) is
a locally compact CO-lattice.

Proof. Theorem 2.2 applies because (K(S), v) is second countable
and Hausdorff. Let {K,} and {K,} be convergent sequences in
K(S) with the myopic topology limits K and K', respectively, and
suppose that Ki c K[ for all i. Then K1 -- K and K' -- K' in the
hit-miss topology of F(S), and K, C K' for all i. By Theorem 3.2
we see that K c K', so that the desired conclusion follows from
Theorem 2.2 and the fact that (K(S), v) is locally compact.
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Remark 3.4 (K(S), v, n, U) is a distributive lattice that has the uni-
versal lower bound 0 C S but has no universal upper bound unless S
is compact. If )C c K(S) is not empty, then inf K eists in K(S) but
sup IC need not, unless S is compact. Hence if S is not compact, then
(K(S), v, n, U) is neither complete nor conditionally complete.

Theorem 3.4 If S is metrizable, then the relative myopic topology of
K'(S) - K(S) \ 0 coincides with the topology induced on K'(S) by the
Hausdorff metric:

dH (K, K') - max sup d(x, K'), sup d(x', K)}.
IzEK zeEK'

Here K and K' are any nonempty compact subsets of S and d is a
metric on S that induces its topology.

Finally, note that the collections

{KF:FEF(S)}UO and {Kc:GEG(S)}UK(S)

consist, respectively, of decreasing and increasing v-open sets. Thus
the LCO-space (K(S), v, C) is order resolvable, and it follows that the
topologies un, and Am generated subbasically by these collections are
upper and lower topologies for (K(S), v, C).

3.3 Limits and Semicontinuity

Henceforth I drop the S in writing F(S), K(S), etc. If {F1 } is a "-
convergent sequence in F with limit F, we write F1 -+ F and lir Fj = F
equivalently. The two theorems that follow are due to Matheron (1975)
and give technically useful convergence criteria for sequences in F. I
refer to (a) and (b) of the second one as Matheron's convergence criteria.

Theorem 3.5 A sequence {Fi} in F converges to F E F if and only if
(1) C c S is open and G n F # 0 ==* G n F, # 0 V but at most finitely
many Fi and (2) K C S is compact and K n F = 0 ==oK fn F = 0 V
but at most finitely many F1 .

Theorem 3.6 A sequence { F, } in F converges to F E F if and only if
(a) for each x E F there exist x, E F, for all but at most finitely many
i such that xi - x and (b) if {Fj,} is a subsequence of {F,}, then every
convergent sequence x,k E Flk has its limit in F. In addition, (a) and
(b) are respectively equivalent to (1) and (2) of Theorem 3.5.
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For Tr*-convergence in G and v-convergence in K, Matheron (1975)
gives the following characterizations.

Theorem 3.7 A sequence {Gi} in G converges to G E G if and only,
if(a) for each x ( G there exists a sequence {xi} in S such that xi - x
and z, 0 Gi for all but at most finitely many i and (b) if {Gi,} is a
subsequence of {G,} and if {xi, 4 G1,} converges to x, then x C G.

Theorem 3.8 A sequence {KJ in K converges in the myopic topology
to K E K if and only if K, -- K in the hit-miss topology ofF and there
ezists a Ko E K such that Ko D K, for all i.

Corollary 3.2 The one-point subset {0} of K is open in the myopic
topology; that is, the empty subset of S is an isolated point of the space
(K,v). Hence K1 -- 0 in K implies that all but at most finitely many
of the Ki are empty.

Proposition 3.3 The relative hit-miss and myopic topologies of the
subspace of one-point subsets {z} of S both coincide with the LCS topol-
ogy of S under the identification {x} - x.

Proof. The proposition equivalently asserts that xi -x x in S 4
{xi} -{ (4 in F * {xi} -- {x} in K. If xi x in S, then
{xi} -- {z} in F by Matheron's convergence criteria and the fact
that all subsequences of a convergent S-sequence converge to the
limit of the original sequence. On the other hand, if {xi} -- {x}
in F, then every subsequence of {xi} converges to x in S by the
second of Matheron's convergence criteria. Thus xi -- z in S, and
we have proved that xi - x in S x I, -* {x} in F. For the
K-convergence case, x, i x in S implies that {x,} is contained in
a compact set, and (by what was just proved) that {xi} -- {z} in
F. Thus {xi} -- {x} in K. On the other hand, if {z,} -{ () in
K, then {z} xi {x} in F, and by what we have already proved,
this implies that xi -- x in S. This completes the proof.

The topological relationship indicated by this proposition is a feature
that recommends the hit-miss topology over the more usual Moore-
Smith order and interval topologies of lattices, which do not relativize
in the desirable manner of Proposition 3.3 (Prink, 1942).
For the next definition, note that the limit of a convergent subsequence
of a sequence {Fi} ({GiC, {Ki}) in F (G, K) is called a limit point of
{Fi} ((Gi}, {Ki}). Also, since F (G) is a compact space, it follows
that every sequence in F (G) has at least one limit point.
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Definition 3.3 Let {F,) be a sequence in F and let C({ F,)) denote its
set of limit points. Then we define Lirm F1 = {F : F E -({Fj}))
and rim F, _ U{F : F E £({F,})} and call them the lower and upper
limits of the sequence {F,).

The next theorem (Matheron, 1975) gives alternative characterizations
of lower and upper limits and tells us (as would be expected) that a
sequence converges if and only if its upper and lower limits coincide.

Theorem 3.9 (Upper-Lower Limit Theorem) If {F,} is a sequence in
F, then (a) Lirm Fi is the largest F E F that satisfies condition "a" of
Theorem 3.6, (b) Tim F, is the smallest F E F that satisfies condition
"b" of Theorem 3.6, and (c) F, -- F= Lim Fs = Lim F, = F.

Hence both the upper and lower limits lie in F.

For the next result I use the term subsequence in the unconventional
manner of Kelley (1955). Generally, a subsequence {ij} is a strictly
increasing function k i-% ik whose domain and range are the positive
integers (or natural numbers). For Kelley, a subsequence {ik} is a non-
decreasing function k A-* ik of the foregoing kind that eventually goes
to infinity; i.e., given a positive integer N, there is a k such that ii, > N.
The usual term for such a subsequence is cofinal subset of {1,2,3, ... ).
I indicate the term subsequence in Kelley's sense by italics.

Proposition 3.4 If {F,} is a sequence in F, then

00 __

rT- F, = n U F,
n= 1 i>_n

where the last overbar denotes topological closure, and

00

im F, = A UFi
(4,) k=1

where {iQ} ranges over all cofinal subsets of {1,2,3, ...).

Proof. For the first part, see Matheron (1975), Proposition 1-2-3. For
the second part consider the following. If {Fik} has a subsequence
that converges to F, then F C Uk=L TFtk by Matheron's conver-
gence criteria. Since every {Fi, } has a convergent subsequence,
Limn F, C n OJ'_F where the intersection extends over all sub-
sequences {ik}. It remains to prove the reverse inclusion. Let
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X E UkýTFj, for every subsequence {it}. We can show that this
implies that x is in every subsequential limit of {F,}. Let F4, --* F.
It is sufficient to prove that x E F. In particular, we know that
x E U l F4,. Let {x 1 3 } in O.•=U F,, have limit x. If {x 1 ,} has
a subsequence x1j, E Fe , we are done. If not, then {xlj} along
with its limit x lies entirely in U"I Flh for some positive integer
MI. Since x must lie as well in i, , there is a sequence
{X2j} with limit x that lies in U' 1,,,+i Fk. If {X2,} has a subse-
quence x 2J, E Fi, I we are again done. If not, then {x 2 } along
with its limit x lies entirely in k=m,,+ Fi, for some positive in-
teger M2 > MI. Since x E 0526,,2+1 Fik 3 {x 3j} with limit x that
lies in U�m,2+i Fk. The proposition thus follows by induction.

Proposition 3.4 shows that the definitions of the lower and upper limits
of a sequence in F (Def. 3.3) in fact do not coincide with the sequence
version of the usual definitions of the inferior and superior limits (lir inf
and lim sup) of a net in a complete lattice (see Birkhoff, 1948). If
{x. : a E V} is such a net (where (D, >) is a directed set), then the
usual definitions are

liminfx,,, sup inf {x# : ,3 t> '

and
lim supx, infsup{xO L3 C> a).

By the expression Lim Fi = ,flI U.>,, F1 given in the first part of
Proposition 3.4, it follows that Lira F1 is in fact equal to lim sup F1. It
is not, however, the case that Lira F, = lim inf F,; that is, it is not true
that Lim &F = mo°= n,>, F. Frink (1942) has given the following net
definitions of the lower and upper limits:

Lim x, =- infv, sup{xg : V) ZY}

where lY ranges over the cofinal subsets of V and

Lim x, =- lim sup x".

Since the directed set associated with a sequence is ({1,2,3,...}, _),
Proposition 3.4 shows that Frink's more general definitions reduce in
the case of sequences to those of Definition 3.3. The origin of these
concepts, as Frink (1942) points out, can be found in Hausdorff (1927):
Frink's Lim and Lim are the generalizations to nets of Hausdorff's
notions of the lower and upper closed limits of a sequence of sets.

The following are analogs of Definition 3.3 and Theorem 3.9 for G.
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Definition 3.4 Let {G,} be a sequence in G and let C({Gi}) denote
its set of limit points. Then define Li, m = fl{G C GE ({G,})}
and Vim G -= U{G : G E C({Gi})} and call them the lower and upper
limits of the sequence {G,}.

Remark 3.5 If {G,} is a sequence in G, then Lim Gi = ji-m G•j]
and ZWi C, = [Lim Gf.

Corollary 3.3 If {G,} is a sequence in G, then Lim GC is the largest
G E G that satisfies condition (b) of Theorem 3.7, TIR GC is the small-
est G E G that satisfies condition (a) of Theorem 3.7, and G, -- C G
im.• .C = r•'• G• = G.

Matheron (1975) defines the semicontinuities of mappings into F, G,
and K as follows.

Definition 3.5 Let X be a topological space.

1. If T : X -- F, then T is USC if and only if P-l(FK) is open in
X for all K E K, and T is LSC if and only if !-'(Fc) is open in
X for all G E G.

2. If %F: X - G, then tP is USC if and only if %P-'(G 0 ) is open in
X for all C E G, and T is LSC if and only if %P-l(GK) is open
in X for all K E K.

3. If IQ: X - K, then %P is USC if and only ifP -'(KF) is open in
X for all F E F, and %P is LSC if and only if 'I-'(Kc) is open in
X for all G E G.

Matheron's definitions coincide with Definition 2.9 when (1) t and A
are the upper and lower topologies of (F,r, C), (2) p* and A* are the
upper and lower topologies of (G,-r*, C), and (3) ji.m and Am are the
upper and lower topologies of (K,v, c). In the next theorem, Math-
eron (1975) particularizes statement (1) of the foregoing definition to
first countable Hausdorff spaces X. This result is a form of the usual
semicontinuity criterion first met in Theorem 2.6.

Theorem 3.10 If X is first countable and Hausdorff and T : X -+ F,
then * is USC atxEX %='I'(x) D Tim- %(x) V {xi} in X that
converge to x, and T is LSC at x E X =# 41(x) C Lim %P(x,) V {x,}
in X that converge to x.
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For the analog of Theorem 3.10 for mappings into G, simply replace
F by G in the statement of that theorem. To get a similar result for
mappings into K requires some preparation.

Remark 3.6 A sequence {K,} in K has v-limit points if and only if
{K,} has a compact subsequence, i.e., if and only if there is a compact
subset K of S and a subsequence {Ki,} such that Kik C K for all k.

Definition 3.6 Let {Kj} be a sequence in K with a compact subse-
quence, and let c({K,}) denote its set of v-limit points. Then we define
the lower and upper v-limits of {K,}, respectively, as follows:

1. v-.im K,- f{K: K E C({K,})}.

2. v-Lim' K, -U{K: K E C({K,1})}.

Definition 3.7 A sequence {K,} in K is called a c-sequence if there is
a K E K such that K D K, for all i. If X is a first countable Hausdorff
space and T : X -- K, then 4I is called a c-mapping if {I'(xi)} is a
c-sequence whenever {x,} converges in X.

Remark 3.7 If {K,} is a c-sequence, then v-Lirm K = Limr Ki and
v-T'tii K, = Ti- K1.

Lemma 3.1 If X is a topological space and i : X - K, then

1. %Y is USC at x E X =#, T is continuous at x in the relative IA
topology of K.

2. %Y is LSC at x E X T 'p is continuous at x in the relative A
topology of K.

Proof. If T is USC (LSC) at x, then TI is continuous at x in the A,,,
(A,) topology of K. Now the relative t and A topologies of K
are generated subbasically by the collections {KK : K E K} U 0
and {Kg : G E G} U K. Thus the relative A topology of K is
precisely An and the relative ,i topology of K is contained in .s,
This completes the proof.

The analog of Theorem 3.10 for mappings into K can now be given:

21



Theorem 3.11 If X is a first countable Hausdorff space and 'P is a
c-mapping on X, then

1. T is USC at X E X 4=* %P(x) D Lira P(xi)V {xj} inX that
converge to x.

2. %P isLSCatXE X 4 P(x) C Lim 'V(x,) V {xj} inX that
converge to x.

Proof. By Theorem 3.10, Remark 3.7, and Lemma 3.1, it is sufficient
to prove that %I(x) D 7Li--m %P(x1 ) V {xj} in X that converge to z
==* ' is USC at x. Since X is a first countable Hausdorff space,
we may characterize the upper semicontinuity of T as follows: T
is USC at x 4 x1 -, x ==* P(x,) - %P(x) in the A,,, topology
of K. Thus % is USC at x x - x, F E F, and P(x)nF = 0
imply that T(x 1) n F = 0 for all but at most finitely many i. It is
hence sufficient to prove that T(x) D Lim '(xi) ==* F E F and
%I(x) n F = 0 together imply that 'F(x1 ) n F = 0 for all but at
most finitely many i. Suppose that F is a closed set that misses
T(x) and that F hits infinitely many of the %P(x1). There is then a
subsequence {ik} and a sequence {yk} in F such that yk E T(Xjj)
Since {y•} is contained in a compact set (because {kI(x 1 )} is), it
follows that {yk} has a convergent subsequence whose limit y is in
F. But such a y must also lie in the upper limit of {T(xi)} and
hence in T(x). This contradiction completes the proof.

3.4 Lattice and Intrinsic Topological Operations

The following are three general and useful results that are used below
to analyze the continuity properties of the lattice operations n and U,
and the intrinsic topological operations closure, interior, and boundary.

Theorem 3.12 A continuous (USC, LSC) function of a continuous
function is continuous (USC, LSC).

Note, however, that a continuous function of a USC (LSC) function is
not necessarily USC (LSC). The next result is due to Matheron (1975).

Proposition 3.5 Let X be a topological space and let 'P : X --- + G.
Then %F is LSC (USC) if and only if the complementary mapping of X
to F given by x i [1P(x)]c is USC (LSC).
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Proposition 3.6 Let %P be a mapping from a product of F's and Gs'
into either F or G and let VI* be its dual mapping. Then %Y is continuous
(USC, LSC) if and only if IP* is continuous (LSC, USC).

Proof. Suppose that 'I maps FI-lI Xj into X where the X, and X
are each either F or G. Let X, denote the generic element of
Xi. Then since (Xf, ... , Xk) i-% (X,,..., Xk) is a homeomorphism
of fl. Xf onto Il'If X1 , it follows from Theorem 3.12 that the
mapping (Xc, .. , Xk) % P(X 1, ... , Xk) is continuous (USC, LSC)
as * is continuous (USC, LSC). Thus it follows (from Prop. 3.5)
that the dual mapping V : (Xf, ... , Xf,) -p [I(X, ... , X--)J is

continuous (LSC, USC) as 'I is continuous (USC, LSC).

Matheron (1975) specifies the connection between the hit-miss topology
of F (myopic topology of K, dual topology of G) and the lattice algebra
(F, n, u) ((K, n, u), (G, n, u)) as follows.

Theorem 3.13 U is a continuous operation in F and K, but n is only
USC in both spaces. On the other hand, n is a continuous operation in
G, but u is only LSC.

The elementary intrinsic topological operations that can be performed
on the closed, open, and compact subsets of S are the closure, inte-
rior, and boundary operations. The interior A* of a subset A of S is
the largest open subset of A, and the boundary OA of A is defined as
OA - A\ A0. Concerning the continuity properties of these operations,
Matheron (1975) gives us the following proposition.

Proposition 3.7 The mapping F @ Fc of F(S) to itself is LSC, and
if S is a locally connected space, then the mapping F - OF of F(S)
to itself is LSC.

Corollary 3.4 We may thus deduce the following:

1. G V C is an LSC mapping of G into F.

2. F - F° is a USC mapping of F onto G.

3. K i K° is a USC mapping of K into G.

4. If S is locally connected, then

(a) K - OK is an LSC mapping of K(S) to itself.

(b) G i 9G is an LSC mapping of G(S) into F(S).

23



Proof. G '-. can be expressed as G i i GCC Y[ = U: i.e., as
an LSC function of a continuous function. This proves statement
1 above. If F is closed, then the complement of FP is F'. Thus
statement 2 follows from Proposition 3.5. For statement 3, let
K1 --* K in K. Then according to statement 2 we have Lim
Y D 7 = [K°]c. Thus K° D [Lim K--c, and by Remark 3.5 we
have K° D Lim K*'. Thus statement 3 follows. For statement 4a,
let Ki --+ K in K once again. Then it follows (from Prop. 3.7)
that Lrim OK, D OK if we understand the lower limit relative
to convergence in F(S); but since the OK, are all contained in a
compact set (since the Ki are), it follows that the lower limits of
{OK,} relative to convergence in K(S) and F(S) are the same.
Thus statement 4a follows. For statement 4b, let Gi -- G in
G(S). Then Gf -- GC in F(S), and since OG'ý = 90-8 = 49GC and
8GC = OCG = OG, it follows that OG C Lim cG,. This completes
the proof.

Note that R" with its usual topology is a connected, and hence lo-
cally connected, topological space. The useful concept of monotonic
sequential (MS) convergence is defined as follows.

Definition 3.8 Let X be a universal set and let {A,} be a sequence of
subsets of X. {A,} is said to be decreasing (increasing) if A, D Aj+1
(A1 C A,+1) for all i. If {Ai} is decreasing, we put A = nfA1, write
A, . A, and call A the MS-limit of {Ai}. If {Ai} is increasing, we put
A = UjA,, write A, T A, and call A the MS-limit of {Aj}. If {Ai} is
either increasing or decreasing, we call it a monotone sequence.

The relation between MS and ir-convergence is as follows:

Theorem 3.14 (Matheron) If {FJ} is a monotone sequence in F, then
Fj I F ==* F, --- F and F, T A ==* F,

Corollary 3.5 We may thus deduce the following:

1. If {f } is a monotone sequence in G, then GC T G = GC -G C
in G and GCj A ==C G, --+ A* in G.

2. If {K,} is a monotone sequence in K, then K, I K == K, -- K
in K and K, T A ==: K, -i in K or F, depending on whether
Sis compact or not.
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4 Minkowski Operations

When the underlying space S is Rn, the vector space operations become
available to augment the lattice and intrinsic topological operations.
We can, for instance, translate a subset A of i" by a vector x E " as
follows: A+x=x+A= {z E R" : z=x+y,yE A}; if Aisempty,
then A + x is defined to be empty.

Remark 4.1 If A C s?" is closed (compact, open), then A + x is closed
(compact, open) for all x E Cn.

The translation mapping is accordingly defined on 3n x F, ?n x K, and
Rn x G into F, K, and G, respectively. We can also multiply a subset
A of Wn by a real scalar a as follows: aA = {x E R' : x = ay, y E A};
if A is empty, then aA is defined to be empty.

Remark 4.2 If A C R' is closed (compact) and a E R, then aA is
closed (compact); if A is open and a # 0, then aA is open.

The scalar multiplication mapping is thus defined on R x F, R x K, and
(R\ {0}) x G into F, K, and G, respectively. It is customary to distin-
guish the multiplication of a set A by -1 with the notation (-.1)A=- A.

Remark 4.3 IfF E F and a • 0, then [aFlc = aFc. If G E G and
a # 0, then [aG]c = aGc.

If A and B are any subsets of R', then their Minkowski sum is defined
byA@B= {x:x=y+z,yE A, zE B}; if A or B is empty, then
A@B=0 0. Thus A(B= B(DA and ifx E ', then A+x= A(e{x).
We follow Matheron (1975) in defining the dilation of A by B as A(D B.

Remark 4.4 If A and B are subsets of R', we have the following:

1. If A is open, then A E) B is open.

2. If A and B are compact, then A E) B is compact.

3. If A is closed and B is compact, then A (D B is closed.

4. If A and B are closed, then A E) B is not necessarily closed.
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Thus ED (or equivalently dilation) gives us binary operations in K and
G, and (A, B) •-- A E) B (A (D b) defines mappings of F x K, F x G,
and G x K into F, G, and G, respectively.

Since the lattice (7'(n), n, U) is self-dual under the complementation
mapping, the mapping of P(Rn) thus dual to A i-& A (D B (namely,
A 1-4 (AC ED B)c) serves to define the Minkowski difference A e B of
two arbitrary subsets of ?n; i.e., AeB - (AC@ B)c. Also, the mapping
similarly dual to A iAEB (namely, A i--. (AcEB)c) gives AGE in
the same way: i.e., A 0 B = (Ac e B)c. Both ED and E0 are accordingly
dual operations. Following Matheron (1975), the erosion of A by B is
taken as Ae J) ={x : x + y E A V y E B}. Dilation and erosion are
thus also each other's dual.

Remark 4.5 If A and B are subsets of sn, we have the following:

1. A is closed (compact) ==* A e B is closed (compact).

2. A is open and B is compact (open) ==; A E) B is open (closed).

3. A is open and B is closed ==> A e B is not necessarily open.

Thus E0 (or equivalently erosion) gives us binary operations in F and
K, and (A, B) i- A e B (A E) b) defines mappings of F x K, G x K,
F x G, and G x G into F, G, F, and F, respectively.

There is some confusion in the literature regarding the definitions of E)
and dilation. Everyone defines A (D B in the same way, but some call
it, rather than Ae EB, the dilation of A by B (e.g., Maragos, 1989, and
Haralick et al, 1987); also, everyone uses the term erosion in the same
way, but some (Maragos, 1989, and Haralick et al, 1987) define "0" so
that the erosion of A by B is A"E" B.

The operation E) has some familiar algebraic properties; it is, for in-
stance, commutative and associative. Consequently (K, Q) and (G, Q)
are commutative semigroups. The set {0} consisting of only the origin
of R' qualifies as an identity element, since A @ {0} = {O} @) A = A
for all A C R". It is not unique, however (and (K, Q) and (G, Q) are
therefore not groups), because (by definition) 0 E) A = A a) 0 = 0 V
A c Rn. Thus, A E) 0 =- R" for all A. On the other hand, 0 E) A = 0
for all nonempty A, while 0 E 0 = Rn. In general, A E) A D {0}, but
if A is nonempty and bounded, then A E) A = {0}. Thus K E K'
implies that K E/ k = {0}; thus, (K', E)) has properties reminiscent of
those of a group: in K' the set {O} is a unique identity element and
every K E K' has a unique "inverse" K' in the modified sense that
(Kc @k)c= (k (D Kc)c = {o}.
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I refer to ($, e, and scalar multiplication as the Minkouksli operations
Some of the important algebraic rules that hold among the Minkowkid
and lattice operations are summarized in the next three results; for the
second and third, see Matheron (1975).

Remark 4.6 For all subsets A and B of R" and all real a and f,

1. 1A = A and OA = {0}.

2. a(j9A) = (af3)A and (a + 8)A c aA @ I3A.

S. a(A n B) = aA nfaB and o(A u B) = aA U aB.

4. a(A (D B) = aA e)•aB.

Proposition 4.1 If A and B are subsets of n", then

(A e) ) (D B c A c (A eD ) e B.

Theorem 4.1 For all subsets A, B, and C of ?n,

1. (AeC)EDBc (A EB)eC.

2. (AeB)eC=(AeC)eB=Ae(BeC).
S. BcC=4>AeBcA(eC,AeCcAeBandBeAcCeA.

4. AE)(BUC) = (AE)B)U(AEC) and Ae(BUC) = (AeB)n(AeC).

5. (BnC)eA = (BeA)n(CeA) and AE)(BAC) c (AEB)n(AEC).

6. (AeB)u(AeC) c Ae(BnC) and (BeA)u(CE)A) C (BUC)eA.

The continuity and semicontinuity properties of the Minkowski opera-
tions relative to the hit-miss, dual, and myopic topologies are given in
the following series of results.

Theorem 4.2 Scalar multiplication is a continuous mapping, respec-
tively, of R \ {0} x F, R x K, and R \ {0} x G onto F, K, and G.

Proof. To prove that scalar multiplication is a continuous mapping
of R \ {O} x F onto F, let F, -- F in F and let ai -- a in
R \ {}. We show that aiF, -• aF in F. If F = 0, then every
subsequence {xi, E FRi fails to converge, and this implies that
every subsequence {Yi, E ai, F• } also fails to converge. So assume
that F # 0. If x E aF, then x = ay for some y E F. Since F 1 --+ F
in F, there are y, E F1 such that yt - y. Thus ajy1 E aFj, and
it follows that aoyj , tay = x. Thus Matheron's first convergence
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criterion is satisfied. For the second, suppose that xj,1 E G%,FA
and that zj, --+ x E R". Since zxi = ay with y, E Fj,, we
have yj, = xi,/ai,, so that y•, - x/a E F. It therefore follows
that x E aF, and this establishes Matheron's second convergence
criterion. This proves the first part of the theorem.

To prove that scalar multiplication is a continuous mapping of
R\ {0} x K onto K, let Ki --- K in K and a, - a in R \ {0}. By
what we have proved, we see that aK, --* aK in F. Since {C4}
is necessarily bounded and there is a compact set that contains
all the Kj, we readily see that there is also a compact set that
contains all the aiK,. To prove continuity at (0, K) for arbitrary
compact K, let ai -- 0 and K, --+ K in K. We must show that
(1) aK, -f {0} when K 0 0 and (2) aK, -- 0 when K = 0. For
(1) let x E K and let x, E K1 be such that xi -- x. Then aixz -* 0.
To complete case (1) we let ys, E aj K,, converge to y and show
that y = 0. There are clearly xj,, E Kik such that yi, = a= xi.
Since {xjj} is contained in a compact set, we assume without loss
of generality that xi,, -- x. Thus it is clear that yi,, -* 0. Case (2)
is an immediate consequence of the fact that all but finitely many
of the K, are empty.

Now note that the mapping (a, G) Cc (a, CC) of R\ {0} x G onto
R \ {0} x F is a homeomorphism. Thus this mapping followed by
scalar multiplication is continuous, and the desired result for G
follows from Proposition 3.5. This completes the proof.

Corollary 4.1 If a 0 0, then A - aA is a homeomorphism of F

(K, G) onto itself.

For the next result, see Matheron (1975), Proposition 1-5-1.

Proposition 4.2 ED is a continuous mapping of F x K and K x K into
F and K, respectively.

Corollary 4.2 The translation mapping is continuous on 31 x F and
31" x K, and for each x E 31" it follows that A ' A + x is a homeo-
morphism of F (K) onto itself.
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Proposition 4.3 E and E hate the following continuity properties:

1. e is only a USC mapping of F x K, K x K, and F x F into F,
K, and F, respectively.

2. @ is only an LSC mapping of G x K into G.

S. E is only a USC mapping of F x G into F.

Proof. Matheron (1975, Prop. 1-5-2) establishes that the mapping
(F,K).ý-FE KisUSConFxK'. SinceFe@=-nVFEF,
we see that this mapping is USC on F x K as well. Matheron also
shows that (K', K) i K' e K is USC on K x K'. Thus we find
that e is also USC on K x K.

To prove that e isUSConFxF, let E, --* E. and Fj --+ F in
F. It is sufficient to show that xi,, E Elk G Fik and xz, - x in R"
together imply that x E E e F; recall here that Lim E, e F, is the
smallest closed set with this property. Since {xj, } C Ej, e Fj,, for
each k, it follows that {x,} e lk C (EDk e Fl) ' F, C Ei; the

first inclusion follows from the general property A @ C C B @D C
whenever A c B, and the second follows from (A eB) eD/6 C A
for any sets A and B. We therefore have {x1,,} ( )F C Ej,, for
all k. Since E is a continuous mapping of F x K, it follows from
Theorem 3.2 and Proposition 3.3 that {x} a F c E and therefore
that ({x} (D P) e F C E e F, because A E C c B E C.whenever
A C B. Since (Ae eA) E) B D A for any sets A and B, we finally
have {(} c E ForxE Ee F. Thuseis USCon F x F.

To see that (A,B) '- A E B is not LSC on F x K, K x K,
or F x F, consider the following example in R2: Let a > 0, and
for each n = 1,2,3,... let K, = {(xI,x 2): z, +A -_<a- n-1}
and let K"= {(xI,x 2) :x2 + x2 <a +n-}. Then Kn -K and
Kn' K in both F and K, where K = {(x 1,x 2) x2+X2 <a
Since Kn' D Kn for all n, we have that K. E K" = K, e K" = 0
for all n because k,, = Kn' for all n. Therefore K, e K" --+ 0 and
Lim'Kne K'=LimrKn eKn=0. But E K = {0} because
K is compact and nonempty. Thus K e K 9 Lirn K. e K,,. This
completes the proof of the first assertion.

The mapping (G, K) i i (G E K)c = GC E) K of G x K into G
can be expressed as a USC function of a continuous function as
follows: (G, K) &- (Ge, K) @ GC e K. Hence this mapping is
USC, and the second assertion follows from Proposition 3.5.
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To prove that e is USC on F x G, let E,-i E in F and Gi - G
in G. By proving that xi E E,, e Gi. and x,, -- z in R" together
imply that x E E G G, we again show that E E) C D rth Ft e G,.
Since for each k we have {xi, } C Eik E) G1,, it follows as before
that {fX} (D04 c (E ke Gik) ( 04 C E1,. We therefore have
{xi,} I @ ik C E&k for all k. Since e is LSC on G x K, it again
follows from Theorem 3.2 and Proposition 3.3 that {x} E G C E
and therefore that ({D} e) E G c E E G. Hence {x} C E G G
or x E E E) G, and it follows that e is a USC mapping of F x G
into F. To see that (A, B) i- A E B is not generally LSC on
F x G, consider the example already used above and let GC -
{(xI,x2):x?+x2<a+n-'}. Then K& -- K and GC -+ K°
in F and G, respectively. Since G,, D K. for all n, we have
Kn e G,, = 0, so that K, e GC -* 0 and

Lim KGn = Lim KeGC -0.

Thus K e K° 9!iM K, E GC. This completes the proof of the
third assertion and the proposition.

Corollary 4.3 The following are now readily deduced.

I. G is a continuous mapping of G x K into G.

2. @ is only an LSC mapping of G x F into G.

3. E) is only a USC mapping of G x G into F.

4. @ is only an LSC mapping of G x G into G.

Because E9 is continuous on G x K and since A E( {x} = A - x for all
A C 3In and x E Rn, we obtain the following:

Remark 4.7 A '-i A + x is continuous on NRn x G and is a homeo-
morphism of G for each X E R".

Since A m-P A is a homeomorphism of the domains F, K, and G onto
themselves, it follows that the continuity properties established above
for 0 and e hold as well for dilation and erosion.

Table 1 summarizes the continuity properties established in this and
previous sections for the various algebraic operations. Note that the
entries for the boundary operation assume that the underlying space S
is locally connected like Rn.
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Table 1.
Summary of Continuity Properties.

Operation Domain Range Continuity type
scalar x set R\ {0} x F F C
scalar x set R x K K C
scalar xset \,\{0}xG G C
(D or dilation KxK K C
(D or dilation F x K F C
ED or dilation F x G G LSC
ED or dilation G x K G LSC
ED or dilation G x G G LSC
E or erosion F x F F USC
E or erosion K x K K USC
eor erosion F x K F USC
E or erosion GxK G C
E or erosion F x G F USC
e or erosion G x G F USC

union F x F F C
union K x K K C
union G x G G LSC

intersection F x F F USC
intersection K x K K USC
intersection G x G G C

Ac_ F F LSC
closure G F LSC
interior F G USC
interior K G USC

boundary F F LSC
boundary K K LSC
boundary G F LSC

When the space S = p", therefore, we have a structure composed
not only of the morphospace (F(•R'), r, n, u), its morphospace dual
(G(R"), r*, n, U), and the locally compact CO-lattice (K(R"), v, n, u),
but as well of the Minkowski operations ED, e, and scalar multiplica-
tion in and among these spaces, along with their continuity properties.
This, then, is the fundamental field of operations of the mathematical
morphology of euclidean sets. The next section considers the "morpho-
logical transformation" theory appropriate to this structure.
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5 M-Transformations of F(Rn)

A mapping 'P of F = F(R") to itself is called a transformation of (or
on) F. A transformation type that I call an M-transformation is here
defined and examined in detail. The order-preserving (see Def. 5.5) M-
transformations are more commonly known as morphological filters. For
the following, let P = P(Rn) denote the class of all subsets of R".

Definition 5.1 P : F - P is said to be translationally invariant or
TI if %F(F + x) = %P(F) + x for all F E F and x E R". A TI mapping
will be called an M -transformation (of or on F) if it is into F and
USC. Similarly, T : G -- P is said to be TI if %P(G + x) = 'P(G) + z
for all G E G and x E R".

Note that the mapping 'P* dual to an AlI -transformation 'P is a TI
LSC mapping of G = G(Rn) into G. This, of course, is an M-
transformation of (or on) G.

5.1 Matheron's Kernel Theory

Definition 5.2 The kernel of a TI mapping 'P : F ---+ P is the set
ker(%P) {F E F : 0 E TP(F)}. Likewise, the kernel of a TI mapping
'P : G - P P is the set ker('Q) =_ {G E G : 0 E •P(G)}.

Although I do not explicitly state them, it should be kept in mind that
there are dual-space analogs of all the results that follow.

Theorem 5.1 If 'P is a TI mapping of F to P and F E F, then

'P(F) = {x E 3 : F- X E ker('P)}.

If X is any subset ofF, then F 1-- {x E R' : F -x E I} defines a TI
mapping of F to P whose kernel is X.

Theorem 5.2 (Closed Kernel Theorem) A TI mapping %P of F to P
is into F and USC if and only if ker('P) is closed in F.

Matheron (1975, Prop. 8-2-1) establishes this result for TI closed-set
mappings that are order-preserving (Def. 5.5). His proof in fact holds
for all TI closed-set mappings and thus validates Theorem 5.2.
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According to Theorem 5.1, a TI mapping is uniquely determined by
its kernel, and there is a one-to-one correspondence between the TI
mappings of F and P(F), the class of all subsets of F. According to the
closed kernel theorem, there is therefore a one-to-one correspondence
between the class of M-transformations of F and the class of closed
subsets of F, i.e., F(F). Moreover, since F itself is an LCS space, we
can identify the class of M-transformations of F with F(F) (understood
to have its hit-rmiss topology) and thereby produce the space of M-
transformations. I denote this space by M(F).

A noteworthy feature of M (F) ,-- F(F) arises from the fact that its
underlying space F is compact. Because of this, F(F) and K(F) are the
same sets, and the myopic topology of K(F) coincides with the hit-miss
topology of F(F). Because the hit-miss topology of F is metrizable, it
additionally follows that the relative hit-miss topology of the subspace
F'(F) =_ F(F) \ 0 coincides with the topology induced on F'(F) by
the Hausdorff metric; the corresponding subspace M'(F) of M(F) is
obtained from the latter by the deletion of the trivial transformation
that maps all F E F to the empty set.

For later convenience, the definitions of TI mappings and their kernels
are h-.e generalized as follows:

Definition 5.3 If., C P is nonempty and such that A+ x E A when-
ever A E A and x E R", then A is said to be closed under translations.
Let A be closed under translations.

I. If 1P : A 7P, then 'P is clled TI if 'I'(A + x) = '1(A) + x for
all A E A and x E n".

2. If I : A - P' is TI, then the kernel of %P is the set

ker(4') = {A E A: 0 E 'Ii(A)}.

It is also useful to expand our notion of dual mappings as follows:

Definition 5.4 Let A C P be nonempty and let

A* = {A• E P: Ac E Al.

Then if •I : A P P, we call the mapping %P* of A* to P defined by
V *(A) = [1(Ac)]c the dual of 41.

If (A, n", U) is a lattice, then so is (A*, n, U), and the two are then dual-
lattice isomorphic under complementation. In this case, the definition
of the dual mapping V' that follows Definition 3.2 therefore coincides
with the present one.
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Remark 5.1 Let A*" =_ {Ae E P: Ac E A}, where A C P is closed
under translations. Then A* is closed under translations, and if %F is a
TI mapping of A to P, then so is V".

The next and final objective of this report is to outline and relate the
representation theorems for M-transformations established by Math-
eron (1975), Maragos (1985 and 1989), and Bannon and Barrera (1991).
For this, however, the lattice/poset structure of M(F) and its associ-
ated CO-space aspects must first be considered.

5.2 Lattice Algebra and Partial Ordering in M(F)

The space M(F) has a natural lattice and poset structure that it ac-
quires from F(F) through the correspondence %F ,-+ ker(%P). If 'P and
V' are transformations in M (F), then the transformations P n V' and
' U 'V can be defined in terms of their kernels as follows:

ker(F n V') M ker(xP) n ker('P')

and
ker(4P U 'V) = ker(T) U ker(%P').

Since these kernels are plainly closed, it follows that T n 'V and T U V'
are in M (F). For all T, Q' E M (F) and all F E F, we moreover have

('P n V')(F) = '(F) n V'(F)

and
('P U V')(F) = P(F) U ''(F).

Since U and n are clearly associative operations in M (F), we may define
'T U ... U 'h and v, n ... n Tk inductively for any finite set {T1, ... , P}

of transformations in M (F). Thus M (F) is closed under finite unions
and intersections. That is,

Proposition 5.1 If T, ...,'Pk E M (F), then

1. 11U ... U Pk and 'Pl n ... n Pk are in M(F).

2. For all F E F,

(a) (PI U ... U Pk)(F) = 'P(F) U ... U 'P(F).

(b) (,PIn...nPk)(F)= 'P(F) n... n Pk(F).
s. ker(*, u ... u %Pk) =ker(,Q ) U ... U ker(4fk).
3. ker(Pl nU... nU k) -ker(%Pl) n ... n ker(%Pk).
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M(F) is in fact closed under arbitrary intersections.

Proposition 5.2 If {'P0 } is a family of transformations in M(F),
then the mapping nf.l defined on F by

F •-nql,(F)

is in M(F) and ker(n.f ) = n.. ker(4'0 ); in fact,

inf{4 0  fla4'o

Remark 5.2 (M(F), n, u) is a complete distributive lattice isomor-
phic to (F(F), n, U) under the correspondence .-- which topologically
identifies M (F) with F(F).

Proposition 5.3 If {4,•} is a family of transformations in M(F),

then the mapping U. %P,, defined on F by

F o U0,4' 0(F)

is in M(F) and ker(U. qFo) = U,, ker(4'0 ); in fact,

sup{PO} = ua4'.

Proposition 5.4 The ordering C induced in M(F) by its lattice op-

erations may be characterized as follows: If 'I, IV' E M(F), then

SC_ C' 4• * (F) C V"(F) V F E F -=* ker(l) C ker(4").

In the following, the hit-miss topologies of F(F) and M(F) are denoted
by the (same) symbol z.

Corollary 5.1 Under the correspondence ,

1. (M(F), _) is poset isomorphic to (F(F), C).

2. (M(F)y,v,) is CO-space isomorphic to (F(F),,,c).

3. (M (F),fN, U) is compact CO-lattice isomorphic to the compact
CO-lattice (F(F),vA, u).

Therefore, U is a continuous operation in M(F), but n is only USC.
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5.3 Matheron-Maragos Representations

The representation theory of Matheron (1975) and Maragos (1985 and
1989) is outlined in this section; it is essentially a representation theory
for morphological filters, i.e., increasing M -transformations.

Definition 5.5 If 'P maps F [or A C V1 to V, then IP is called in-
creasing (decreasing) if %V(E) D xI,(F) ( %V(E) C %Y(F)) whenever E and
F are in F [A] and E D F. "Order preserting" and "order reversing"
are synonyms for "increasing" and "decreasing."

Remark 5.3 If A C P is nonempty and P A -:A P is increasing
(decreasing), then 'T* is increasing (decreasing).

The utility of the concept of MS convergence (Def. 3.8) is revealed by
the following important result (Matheron, 1975).

Proposition 5.5 If 'P : F -- F is increasing, then

T is USC 4 I• F in F ==:* %P(Ft) 1' (F).

If we are interested only in morphological filters, this proposition tells
us that the topological machinery outlined and developed so far can be
almost entirely dispensed with. If we are interested in nonincreasing
M-transformations, however, we need the entire topological apparatus.

Remark 5.4 The mappings F a-% 0 and F @i R'" VF E F are .-
transformations that are at once increasing and decreasing. We denote
them %P0 and TPR. and call them the trivial transformations.

Theorem 5.3 If %P is a TI mapping of F to P, then %P(O) is either
0 or Rn, and likewise for 'F(R'). Furthermore, if T is nontrivial and
increasing (decreasing), then 'P(0) = 0 (3n) and 'P(3?") = 3n (0).

Theorem 5.4 'P E M(F) is increasing (decreasing) if and only if
ker(TI) is an increasing (decreasing) set.

I denote the subspace of increasing (decreasing) M-transformations of
F by M I(F) (MI(F)).

Proposition 5.6 M.T (F) and MI(F) are closed subspaces of M(F).
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Proof. Let {TP} be a sequence of increasing M-transformations and
suppose that %Pi - IV in M(F). To see that 41 is increasing,
let ker(Tj) = Xj and let ker(%P) = F. Then our hypothesis is
equivalent to F, -' F in F(F) and each Fi is an increasing set.
Let F be any set in Y and let E D F. There are F, E Y such
that F, --* F in F. Let E, = Fj U E. Since each ., is increasing
and E, D F,, it follows that E, E F for all i and E, -- E in F.
Thus E E Y, and it follows that % is increasing. The proof for
.M1(F) is similar.

Since M. (F) and M/(F) are also closed under the lattice operations,
it follows that the posets (MI(F), _) and (MI(F), _) are compact
ordered spaces, and that the lattices (MT(F), n, U) and (M.I (F), nl, u)
are compact closed-order lattices (when MT(F) and MI(F) have their
relative topologies in M(F)).

The next result is Matheron's well-known union of erosions formula.

Theorem 5.5 If %P E A4T(F), then for all F E F

T (F) = U{ek: E Eker(ql)}.

The corresponding result for * E MI(F) is

Theorem 5.6 If 41 E M I (F), then for all F E F

%P(F) = U{e! E F: E E ker(j)}.

It is well known that there is much redundancy in the above formulas.
The minimal basis kernel (Maragos, 1985) Kmin(I) of a I E M1 (F) is
the collection of minimal elements under C of ker(,Q) (i.e., the set of
E E ker(%P) such that no F E ker(f) is a proper subset of E). Similarly,
the maximal basis kernel Kmax(') of a 'I E M I (F) is the collection of
maximal elements under C of ker('). These collections are empty when
ker(TI) is empty (i.e., when qI = 'PO); otherwise, the existence of K/mi.
and IC,,. as nonempty collections is guaranteed by Zorn's lemma and
the fact that ker(l) is closed in F. The following lemma of Banon and
Barrera (1991) helps to show this.

Lemma 5.1 If L is a totally ordered subset ofF(S), then r1C and U-
lie in the closure of L.
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Theorem 5.7 If F is a nonempty increasing closed subset of F(S),

then the set MA of minimal elements of F in Y is nonempty and

.F= {F E F(S): F ) M,M E MA}.

On the other hand, if F is a nonempty decreasing closed subset ofF(S),
then the set M, of maximal elements of Y in F is nonempty and

F'= {F E F(S): F C M,M E Mv}.

Proof. Let E be an element of Y and let AE denote the class of el-
ements in F that are subsets of E. Every totally ordered subset
of AE has an infimum in F(S) given by the intersection of all the
elements of the subset. Because F is closed in F(S), it follows
from Lemma 5.1 that this infimum lies in F and hence in AE.
Thus, every totally ordered subset of AE has a lower bound in
AE; hence by Zorn's lemma, AE has a minimal element that is
also a minimal element of F. Let MA denote the set of all such
minimal elements as E ranges over F. Since F is increasing and
every E E F contains an M E MA, it follows that

F= {F E F(S): F D M,M E MA}.

The proof for decreasing F is similar.

Since B D C ==> A e • D A eB, the E E ker(T) of Theorem 5.5
can be limited to those in Ki,),(%); the E E ker(I) of Theorem 5.6 can
likewise be limited to those in /C.K(f).

Corollary 5.2 We therefore have the following:

1. If IQ E M (F), then for all F E F

4((F) = U{F e k: E E KCmin('P)}.

2. If %F E M (F), then for all F E F

T (F) = U{E e F: E E/Cma,(@)}.

I refer to the contents of Theorems 5.5 and 5.6 and Corollary 5.2 as the
Matheron-Maragos representations. The first part of the next result
(Matheron, 1975) is an algebraic form of Theorem 5.5.
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Theorem 5.8 If V : -P-- P is TI and increasing, then for all A E P

1. P(A) =U{A E : B Eker()}.

2. 40 (A)=l{A (D bB Eker(T'P)}

The second part of this theorem is Matheron's intersection of dilations
formula. The topological version of this formula is an important addi-
tion to Theorem 5.5. To obtain it, consider the following definition.

Definition 5.6 If %P maps F to P and is increasing, then we define

the associated mapping ^PA for each A E P by

,PA(A) = U(%F() : F E F,F C A}

where the union of the empty family is taken as empty.

TA is the smallest increasing extension of %P to P and has the associated
dual (^PA)* on P. For convenience I denote the latter more briefly as V;
and write OK for 0 restricted to K.

Remark 5.5 If %P is a TI mapping of F to 1', then so is 'A.

If 'P E MT(F), then for all F E F (by Thin. 5.8),

vk(F) =''A(F)= U FEB- fl F a e .
BEker(4'A) BEker( P)

Theorem 5.5 accordingly states that it is enough in the third member
to take the union over the sets in ker('P) C ker('PA) and then form the
topological closure. Theorem 5.9 (below) is a topological rendering of
the intersection of dilations formula (Matheron, 1975); it establishes
(among other things) that it is sufficient in the last member to take the
intersection over the sets in ker(V)K) C ker(O).

Theorem 5.9 Let 4F be an increasing TI mapping of F to P. Then,

1. ker(OK) is closed in K.

2. %F is into F and USC if and only if for all F E F

%P(F) = n{F a) k K E ker('OK)}.

3. P E MT(F) == ker(o) = f{FK K E ker(PK)}.

Therefore, it is always possible to represent a morphological filter as an
intersection of dilations by compact sets.
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5.4 Banon-Barrera Representations

The representations of Banon and Barrera (1991) generalize those of
Matheron-Maragos to arbitrary %P E M(F).

If E and H are in F and E C H, then we can define the bracketing
transformation. A (E, H) for all F E F by

F A (E,H) M {z E R" : E + x c F c H + x} = (F eE)n(f' e F).

Bracketing transformations are essentially the same as Serra's hit-miss
transformations @ (E, HC). Indeed, F & (E, Hc) = F A (E, H) for all
F E F. It is clear that .A(E, H) is translationally invariant and that its
kernel {F E F : E C F C H} -= [E,H] (called a closed interval in F) is
a closed subset of F. Thus, •/A (E, H) E M (F). The basic importance
of bracketing transformations is made clear by Theorem 5.10, which
represents the general 4I E M(F) as the union of those bracketing
transformations whose kernels are contained in ker(').

Theorem 5.10 (Banon-Barrera) If 'I E M(F), then for all F E F

T (F) = U{F A (E, H): [E, H] C ker(%P)}.

This result is perhaps the sharpest expression of the fact that the mem-
bers of the transformation space M(F) act directly on the shape/size
content of binary images to produce their output. To relate the repre-
sentation of Theorem 5.10 to the Matheron-Maragos representations,
note that if * E M.T (F), then

[E, H] C ker(*) = [E, Rn] c ker(f) 4==* E E ker(T).

Also, F A (E, Rn) = F e P. Thus, the expression

T (F) = U{F A (E,H): [E,H] c ker(')}

becomes %F(F) = U{F e : E E kcr(%P)}. Also, if %P E MA(F), then

[E, H] c ker(%I) = [0, H) c ker(%P) H H E ker(%P).

Since in this case F A (0, H) = /i e F, we can see that

%P (F) = U {F A (E, H): [E, H] C ker(*)}

becomes '1(F) = 0IH/ E) F: H E ker(T)}. Theorem 5.10 thus com-
bines and generalizes Theorems 5.5 and 5.6 to arbitrary * E M(F).

Now consider the following definition (Banon and Barrera, 1991).
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Definition 5.7 If T E M(F), then a collection B of closed intervals
contained in ker(T) is said to satisfy the representation condition for IF
if every closed interval contained in ker(T) is contained in an interval
of B. The class of maximal closed intervals contained in ker(%P) is
denoted B(%I) and is called the basis of T.

Remark 5.6 If T E M(F) and B satisfies the representation condi-
tion for TI, then B(%P) C B.

Theorem 5.11 (Banon-Barrera) If %P E .M(F) and if B satisfies the

representation condition for T1, then for all F E F

%P(F) = U{F A (E, H): [E,HI] E B}.

In addition, B(TI) itself satisfies the representation condition for %P, so
that T(.) = U{" A (E, H) : JE, H] E B(%,)} is a minimal representation
of TP as a union of bracketing transformations.

Note that if TI E M.I (F), then [E, H)] E Bp = E E KImin('I), and if
T E M. (F), then [E, H] E Bp -== H E Amax('I); thus, the minimal
representation of Theorem 5.11 generalizes Corollary 5.2 to M(F).
Let us now redefine •/A (E, H) on P for E C H (both) also in P. The
dual of. A (E, H) will be denoted 'V (E, H) and is given by

A V (E, H) = {X E Rn• : A n (E + x) :A 0 or A U (H + x) 34 R"})

(A ®D t ) U (Ac ® fic).

With this pair of mappings, Banon and Barrera (1991) have established
an algebraic representation of arbitrary TI mappings that generalizes
Theorem 5.8. Letting [E, HIA = {A E A: E c A C H}, where E and
H are assumed in A (and likewise for A*), they prove the following:

Theorem 5.12 If A C P is closed under translations and T : A - P

is TI, then for all A E A

1. T(A) = U{A A (E, H) : [E, iI]A c ker(4')}.

2. T (A) =n({AV (E, 11) : [E, I!.A, C ker(�J*)1.

This theorem reduces to Theorem 5.8 when A = P and TI is increasing.
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5.5 Representations from Countable Bases

In this final section, I describe a class of representations generated by
certain countable bases for the hit-miss topology of F. These bases are
defined as follows. Let B denote a relatively compact countable base for
the topology of R" such that each open C = U{B E B : _ C G}. Let /
denote the class of subsets of F that have the form F- B,..a, where

m and k are arbitrary nonnegative integers and Bj,...,Bm,S1, h...,Sk
are arbitrary sets from B. Then the countable collection '0 is a base
for r. With respect to such a /8, we can represent an arbitrary open
subset of F as a countable union of sets of the form ;tuu... " An
arbitrary closed subset of F can therefore be represented as a countable
intersection of sets of the complementary form FB, U.. .uFBY" U ...Li.
Such a representation of the kernel of a if E M (F) will be called an
elementary #3-expansion of ker(T). Since FBý = {F E F : F C Bic}
is a decreasing set, Fi is the kernel of a decreasing transformation in
M(F). It therefore follows from Proposition 5.1 that

ker(W) = F"' U ... U FB"R (1)

is also the kernel of a decreasing V E M(F). Also,

ker(t9) = FTu... u (2)

is the kernel of an increasing V E M(F) because Fyu...us is plainly
an increasing set. I accordingly adopt the following terminology (and
denote M(F) more briefly as M):

1. A V E M with a kernel of form (1) will be called an elementary
decreasing M - transformation.

2. A t9 E M with a kernel of form (2) will be called an elementary
increasing M -transformation.

Again applying Proposition 5.1, we can now see that

ker(¢) = FB, u ... u FB- u Fuu... s (3)

is the kernel of a 0 E M that has the form 0 = VUt9, where V and 0 are
elementary decreasing and increasing M-transformations, respectively.

Definition 5.8 A 0 E M with a kernel of form (3) will be called an
elementary M-transformation.

In view of Proposition 5.2, we may summarize as follows:
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Theorem 5.13 Let 'P E M and let Rl FB('0 U ... U FB U F U... x;

be an elementaryf6-expansion of ker(*). Then ' - flk¢* where {O} is
an at most denumerable set of elementary M-transformations such that
ker(4=) = FB(') U...UFe-,UF. u;s-•i" Thus =O, oU , where the V,

1 "'" .U li

and t9 are, respectively, elementary decreasing and increasing members_B( ') _ W(
of M with kernels ker(Wo) = F , U...UF 'B,~ and ker(t,) = F;Fu ...t•;.

I call the representation %P - fl • of this theorem an elementary #-
expansion of *. For an elementary increasing 09, the minimal basis
kernel is simply the class of all one-point subsets of

K = 3,_U 3, U ... U Y,.

According to Corollary 5.2, then, the action of the corresponding map-
ping 0 on a set F is given by

O(F)= U(F+x)=F(DK.
zEK

For an elementary decreasing W, IC,,. (W) is contained in the finite col-
lection {Bc, ... , BJ}, and the action of the corresponding W is

w(F)= U e F.

Theorem 5.14 follows from these observations.

Theorem 5.14 If %F E M and F E F, then %P(F) = ROi(F), where
the elementary M-transformations Oi are given by

Oi(F) = (F E K1 ) U U (E&I eF)
j~1

where K= O U ... U Sý andk()=B()

This representation of the M-transformations is useful in extending the
present theory to ERV USC functions.
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6 Conclusion

My concern in this report has been with closed-set morphology, with
giving a detailed summary exposition of the algebraic and topological
theory of the morphological transformations of euclidean sets. In the
next stage of the theory, the more general ERV USC functions must be
used to erect a morphology theory of greyscale images on the foundation
of closed-set morphology.

This transition from closed-set morphology in real n-dimensional space
to ERV USC function morphology in n independent real variables is
often understood in terms of the method of sections or threshold de-
composition. With the formal justification provided by Serra's theorem
(Serra, 1982), this method applies an M-transformation of F(Rn) to
the horizontal cross sections of the function to obtain a "stack" of at
most n-dimensional closed sets whose "top surface" defines the graph
of the transformed function under suitable conditions. Serra's theorem
provides the necessary and sufficient conditions for such a "stack of
sets" to define an ERV USC function. Besides being USC and TI, the
mapping used to transform the cross sections must be increasing.
A more general but indirect way to develop a function morphology is
to define the morphological function transforms by means of the um-
brae of the graphs of the functions (Matheron, 1969; Sternberg, 1979).
This method takes advantage of the fact that the class of umbrae of
the ERV USC functions defined on R?" is a topological subspace of
F(Rn x [-oo, oo]) when the latter has Matheron's hit-miss topology.
Because of this, the M-transformations of this umbra subspace can be
used to indirectly define the morphological transforms of the ERV USC
functions. Moreover, the class of order-preserving M-transforms (the
ones that preserve the < relation and therefore correspond to increas-
ing umbra transformations) turns out to be identical to the class of
transforms defined by the threshold decomposition method. In other
words, the conventional threshold decomposition mcthod results in a
theory of morphological filters of greyscale images. The general class
of M-transforms produced by the umbra method consists of a great
deal more than morphological filters, however. In pursuing the umbra
method, one can establish many function-morphological analogs of the
set-morphological results summarized in this report. All this will be
rigorously developed in a companion report.
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This appendix gives a summary of background material in general
topology. It mainly follows the treatise of Kelley (1955).

Definition A.1 Let X be a set and let -r be a collection of subsets of
X. We call the pair (X, r) a topological space if X E r, 0 E r, and

1. If {UI1,..., Uk} is a finite family of sets in -r, then fý.j U, E 7r.

2. If {U.} is any family of sets in -r, then U. U. E 7.

Conditions 1 and 2 are often stated as r is closed under finite intersec-
tions and 'r is closed under arbitrary unions. 7r itself is called a topology
for (on, in, or of) X, and its members are called the open subsets of
X. The elements of X are usually called points. When no confusion
is likely, it is customary to say "the topological space X" rather than
"the topological space (X, r)" and "open set" rather than "open subset
of X."

It is readily seen that the collections {X, 0} and P(X) (i.e., the col-
lection of all subsets of X) are topologies for X. We call {X, 0} the
trivial topology and P(X) the discrete topology (of X). These are the
extreme cases for any given set.

Definition A.2 If Tr and Tr are topologies on X and 'r D r', we say
that T" is larger (stronger, finer) than r' or that 7-' is smaller (weaker,
coarser) than r.

Thus the trivial topology is the smallest one that X can have, and the
discrete topology is the largest.

A.1 Generated Topologies
Remark A.1 If {-,r,} is a collection of topologies on X, then fl1r. is

a topology on X but U,,,r need not be. In fact,

1. Nflr, is the unique largest topology r on X such that r C r. V a.

2. There is a unique smallest topology T' on X such that 9 D U, Tr.

Remark A.2 If X is a set and A is a collection of subsets of X, then
the smallest topology -r(A) on X that contains A exists and equals the
intersection of all the topologies on X that contain A.

We call r(A) the topology generated by A in X. The topology r' of
Remark A.1 is accordingly called the topology generated by Ur 0 .
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A.2 Neighborhoods

Definition A.3 If x is a point in a topological space X, then a subset
of X containing an open set that contains x is called a neighborhood of
z. Thus an open neighborhood of x is an open set U with x E U.

The neighborhood concept turns out to be very useful. For instance, it
leads to alternative characterizations of the open sets (Thin. A.1) and
helps us analyze the structure of the so-called closed sets.

Theorem A.1 If X is a topological space and G C X, then the fol-

lowing are equivalent assertions.

I. G is open.

2. G contains a neighborhood of each of its points.

3. G is a neighborhood of each of its points.

A.3 Closed Sets

Definition A.4 For the following, let X be a topological space.

1. A subset F of X is said to be "closed" if its complement is open.
2. A point x E X is called a "cluster point" of a subset A of X if

every open neighborhood of x includes a point of A \ {x}.

3. A point x E X is called a "point of closure" of a subset A of X if
every open neighborhood of x includes a point of A.

4. The set A of all points of closure of A is called the "closure of A."

Remark A.3 Let A be a subset of a topological space X.

1. A cluster point of A is a point of closure of A, but a point of
closure of A need not be a cluster point of A.

2. If AA denotes the cluster points of A, then A = A U AA.

Theorem A.2 Let X be a topological space. Then,

1. X and 0 are closed.

2. The intersection of any family of closed sets is closed.

3. The union of any finite family of closed sets is closed.

4. A subset F of X is closed if and only if F = F.
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5. A is closed for any subset A of X.

6. For each A C X, 7 is the intersection of all closed supsets of A.

The closed subsets of a topological space are uniquely characterized by
statements 1, 2, and 3 of Theorem A.2.

Theorem A.3 Any collection A of subsets of a set X that includes
X and 0 and is closed under arbitrary intersections and finite unions
defines the unique topology on X (the class of complements of the sets
in A) for which A is the class of closed sets.

A.4 Closure Operators

Topologies can also be defined by means of closure operators.

Definition A.5 A closure operator on a set X is a function that as-
signs to each A C X a subset A of X such that the following hold:

I.0=0.

2. A c Afor each A c X.

S. A-= A for each A C X.

4. For all subsets A and B of X, A U"B = AU B.

Properties 1 to 4 are called the Kuratowski closure axioms. Closure
operators are indeed sometimes called Kuratowski closure operators.

Theorem A.4 Let -. be a closure operator on a set X, let A be the
family of subsets A of X such that A = A, and let r be the family o0
complements of the members of A. Then r is a topology on X and A
is the 'r-closure of A for each subset A of X.

A.5 Closed-Set Bases

Definition A.6 Let X be a topological space.

1. A collection 3 of closed subsets of X is called a closed-set base for
the topology of X if ever closed subset of X is an intersection of
sets in B.

2. A collection B of closed subsets of X is called a closed-set subbase
for the topology of X if the finite unions of sets in B form a closed-
set base for the topology of X.
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A.6 Convergence

The concept of convergence in a topological space is one of the most
important tools for the analysis of topological phenomena.

A.6.1 Sequences

Definition A.7 Let X be a topological space and let N denote the set
of natural numbers. A function S : i - xi defined on N with values in
X is called a sequence in X. We denote such sequences by {xz : i E N}
or more simply by {x I }.

Definition A.8 A sequence {x1} in X is said to converge to x E X if
every open neighborhood of x contains all but at most a finite number
of the xi. We symbolize this situation by writing either xi -- z or

lim xi = x
i--00

(sometimes simply lir xi = x). We call x a limit of the sequence {zi}.

Remark A.4 If X is a topological space and x E X, then the sequence
{x1} in X with xi = x for all i converges to x.

Definition A.9 Let X be a topological space and let {x1} be a sequence
in X. We say that x E X is a limit point of {xi} if every open neigh-
borhood of x contains infinitely many of the xi.

Remark A.5 Let X be a topological space and let {x1} be a sequence
in X. Then x E X is a limit point of {x1 } if and only if for each open
neighborhood U of x and each natural number N there is a natural
number n > N such that xn E U.

Remark A.6 Let {xi} be a sequence in a topological space X.

1. If x is a cluster point of {xi}, then x is a limit point of {xi}.

2. If x is a limit point of {xi}, then x is a point of closure of {Jx}.
3. The converses of statements 1 and 2 are generally false.
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A.6.2 Double Sequences

Definition A.10 If X is a set, then an X-valued function 7R defined
for all ordered pairs (i, k) of natural numbers is called a double sequence
in X. We generally write 1Z(i, k) = xi,,, and denote the double sequence
by {x,k, : i E N and k E N} or more simply by {x,,,}.

Theorem A.5 is called the double sequence theorem.

Theorem A.5 Let {X,,k : i E N and k E N) be a double sequence in
X. If for each fixed i the sequence {X,,k : k E N} converges to x, E X,
and if the sequence {xi} converges to x E X, then x%,f(j) -. x for some
N-valued function f defined on N.

A.6.3 Subsequences

Definition A.11 Let X be a topological space, let S : i ' xi be a
sequence {x1} in X, and let a : k &- iAk be an N-valued function defined
on N such that k > k' == i•k > ik, (i.e., a is strictly increasing). Then
the function S o a defines the sequence {S o a(k) : k E N} = {x},
which we call a subsequence of our original sequence {xi}.

Remark A.7 Let {x,} be a sequence in a topological space X and let
x be a point in X. If {xi} has a subsequence {xi } such that xtk - x,
then x is a limit point of {x, }. The converse is generally false.

Theorem A.6 Let X be a topological space.

1. A sequence {xi} in X converges to x E X if and only if every
subsequence of {xj} converges to x.

2. If {x,} is a sequence in X and x, 74 x E X, then 3 a subsequence
{xi,,} of {xi} none of whose subsequences converge to x.

A.6.4 Directed Sets and Nets

Sequence convergence is an inadequate tool in completely general topo-
logical spaces because of the following shortcomings:

1. A sequence may converge to more than one point.

2. Distinct topologies can have the same convergent sequences and
limits; that is, sequence convergence can fail to fix the topology.
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The more general Moore-Smith theory of net convergence overcomes
the seciind shortcoming.

Definition A.12 Let D) be a nonempty set of elements a,5,7, in
which a reflexive and transitive binary relation C> is defined. If (V), L>)
also has the Moore-Smith property (namely, for each a and # in D) there
exists a -7 E D) such that -y t> a and -y t !), then (V), t>) is called a
directed set and D) is said to be directed by t>.

Definition A.13 A subset V)' of a directed set D) is called cofinal if for
each a E• ) there exists a a E 1Y such that o 1> a.

Remark A.8 Let (V), L) be a directed set.

1. If V) is a subset of V) that is not cofinal, then the complement of
2)' in V) is cofinal.

2. If V) is a cofinal subset of 2), then (1Y, >) is a directed set.

Definition A.14 If X is a set and (D), >) is a directed set, then a
function K": a @-b x. defined on D) with values in X is called a net in
X and is denoted {x. : a E D)} or more simply {x,}. We also use the
notation (rIT), I>), or more simply KID, or more simply still K.

Remark A.9 The set of natural numbers together with the relation >
is a directed set; hence a sequence is an example of a net.

A.6.5 Subnets

Definition A.15 Let (V), I) and (VY, W') be directed sets and let.KIT)
and.IK'I2) be nets in X. We say that A'IE)' is a subnet of fI2) if there
is a function E : VY - V V that satisfies the following:

I. N' = o E.

2. V a E 2) 3 a' E V)' such that 6' Wa' =', EV(f3) I> a.

Remark A.10 Suppose that K( is a net in X and that K' is a subnet
of K. If A" is a subnet of K', then Kr" is a subnet of K.

Remark A.11 Let (V), C>) be a directed set and let 7Y be a cofinal
subset of ). If ./) is a net in X and if I denotes the identity mapping
of2' to 7), then (Kfo1)JI' is a subnet of KID.

Thus, in particular, a subsequence of a sequence is a subnet of that
sequence considered as a net. On the other hand, sequences may have
subnets that are not subsequences.
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A.6.6 Moore-Smith Convergence

Definition A.16 Let X be a topological space, let {x.) be a net in X,
and let x be a point of X. We say that {x. } converges to x if for each
open neighborhood U of x there is a (3(U) such that

a E(3(U) ==, x. E U.

In this case we say equivalently that x is a limit of the net {x 0 }.

In general a net can converge to more than one point. This is the
shortcoming of sequence convergence that net convergence retains.

Theorem A.7 Let X be a topological space.

1. If V is a directed set and x E X, then the net {Ix : a E V} with
x. = x for all a E V converges to x.

2. A net A( in X converges to x E X if and only if every subnet of
A( converges to x.

3. If x E X and A" is a net in X that does not converge to x, then
there is a subnet of .V none of whose subnets converge to x.

A.6.7 Product Directed Sets

Let (V, t>) and (V', W>) be any directed sets and let V x Vy denote
the set of ordered pairs (a, a') where a E V and a' E 7Y. We define a
reflexive and transitive binary relation >> in V x 1Y as follows:

(a,0 a/ > (6'0'i) €=•a t>,3 and olt' t

>> has the Moore-Smith property and thus directs V x V×. We call
(V x V', >) the product directed set.

Suppose now that {(V 0 , >) : a E A} is a family of directed sets
indexed by the elements of an arbitrary set A. The product set 'Lý.A V.
is then defined to be the class of all functions f defined on A such that
f(a) E V•. The product directed set

is defined as follows: If f and g are elements of Fl-,, V., then f >> g 4
f(a) ý-. g(a) for all a E A.
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A.6.8 Iterated Limits Theorem

Theorem A.8 is a generalization of the double sequence theorem to nets.

Theorem A.8 Let V be a directed set and let {I. a E V} be a
family of directed sets. Let f) denote the product directed set

V x fl v),
aEV

and let W(13, f) = (13, f(,3)) for all (13, f) E D. Suppose that .1(13, A)
lies in a topological space X for each 13 E D and A E Vps, so that
{INI(13, A) :A E V#} is a net in X for each fixed 13. Assume (for each
fixed 13) that this net converges to x# E X, and that {x# 13 fE DJ
converges to x E X. Given all this, we conclude that the net (WoOt)ID
converges to x.

A.6.9 Limit Points of Nets

Definition A.17 If X is a topological space and A = {x. : a E D} is
a net in X, then a point x E X is called a limit point of.IM if for each
open neighborhood U of x and each a E V, there is a 63 E V) such that
13 _ a and xs E U.

Theorem A.9 A point x in a topological space X is a limit point of a
net A" in X if and only if there is a subnet of M that converges to x
(compare with Rmk. A.7).

A.6.10 Nets and Closed Sets

Theorem A.10 Let X be a topological space. Then,

I. A point x is a cluster point of A C X if and only if there is a net
in A \ {x} that converges to x.

2. A point x belongs to the closure of A C X if and only if there is a
net in A that converges to x.

3. A subset F of X is closed if and only if the limits of all convergent
nets in F lie in F.

Another useful result that characterizes the limit points of nets in terms
of closure is as follows:
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Theorem A.11 Let KID be a net in a topological space X and for
each 6 EV1 let A { =- (AK(a) : a tL>i}. Then x E X is a limit point of
AI'D if and only if x is in the closure of each A,, i.e., if and only if

x E n Flp
,,ED

The third assertion in Theorem A. 10 shows that the class of convergent
nets in a topological space, together with their corresponding limits,
determines the class of closed sets and by complementation the topol-
ogy; that is, no other topology has precisely the same convergent nets
and limits. Net convergence is accordingly definitive of the toDology of
general topological spaces.

A.7 Convergence Classes

We can clarify the way in which net convergence is definitive of topology
by considering the notion of a convergence class.

Definition A.18 Let X be a set and let C be a class consisting of
pairs (, x), where K is a net in X and x E X. We say that C is a
convergence class for X if the following hold:

I. If x E X, V) is a directed set, andKA" is the net {x. : a E V} with

x 0 =xforallaEV, then (K',X) EC.

2. If (KA,x) E C, then (.',x) E C for all subnets AK of K'.
S. If A" is a net in X, x E X, and (A(,x) V C, then .A has a subnet

KP such that N' is a subnet of N' ==: (A/, x) f C.

4. Let V be a directed set and let {I), : a E V} be a family of directed
sets. Let 'b denote the product directed set

V x i V),
aE'D

and let H7-(P6, f) = (,6, f (0)) for all (fl, f) E V. Suppose that

AK(f, A) lies in X for each 63 E V and A E 2),. If

({K(/3, A) : A E Vp}, x,) E C

for each / E D and if ({x,},x) E C, then (Kro 0,X) E C.
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Theorem A.12 Let C be a convergence class for X and for each subset

A of X, let A be the set

{x E X : (At, X) E C for some net .Af in A}.

Then - is a closure operator on X and (.I, X) E C 4==:, Xf converges
to z in the topology induced by -.

Let T(X) denote the set of all topologies that X admits and let C(X)
denote the set of X's convergence classes. Then Theorem A.12 gives us
a mapping 7: C(X) -- T(X), where T(C) is the topology induced on
X by the closure operator -. We call T(C) the topology induced by (the
convergence class) C on X. Now each -r E T(X) has a corresponding
convergence class C,, namely, the class of r-convergent nets together
with their limits; moreover, T (C,) = r for all r E T(X). We may
therefore conclude that 7T is one-to-one and onto T(X). This result is
a precise statement of the equivalence of net convergence and topology.

Remark A.12 Let C1 and C2 be convergence classes for X and let rl

and r2 denote the corresponding induced topologies. Then,

I. C1 C C2 if and only if r2 C Tr.

2. C1 n C2 is a convergence class for X whose induced topology is
generated by r1 Ur2 .

3. The convergence class inducing r1 flr 2 is the smallest one contain-
ing C•tC 2.

A.8 Open-Set Bases

Definition A.19 Let X be a topological space.

1. By a base for the topology of X, we mean a collection B of open
sets such that every open set is a union of sets in B.

2. By a subbase for the topology of X, we mean a collection of open
sets whose finite intersections form a base for the topology of X.

3. By a local base at x E X, we mean a collection B, of open neigh-
borhoods of x such that every open neighborhood of z contains a
member of B1.
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A.9 Special Topological Spaces

Two important species of topological space are related to the count-
ability properties of local bases and bases.

Definition A.20 Let X be a topological space.

1. If X has a countable local base at each x E X, we call X a first
countable space.

2. If X has a countable base, we call X a second countable space.

There are also a number of important species of topological space that
are related to the separation properties that a space may have.

Definition A.21 Let X be a topological space.

1. X is a To-space if for every pair of distinct points in X there is a
neighborhood of one of them in which the other does not lie.

2. X is a T1-space if for every pair of distinct points z and V in
X there is a neighborhood of x in which y does not lie and a
neighborhood of y in which x does not lie.

3. If every pair of distinct points in X have disjoint neighborhoods,
we say that X is a Hausdorff space or a T2-space.

4. X is regular if x E X, F is closed, and x V F together imply that
there are disjoint open sets U and V such that z E U and F C V.
A regular Ti-space is called a T3-space.

5. X is normal if for every pair of disjoint closed subsets E and F
of X there are disjoint open sets U and V such that U D E and
V D F. A normal T1-space is called a T4-space.

Theorem A.13 We have the following equivalent characterizations.

1. A topological space X is Hausdorff if and only if each net in X
has at most one limit.

2. A topological space X is a T, -space if and only if every one-point
(singleton) subset of X is closed.

3. A topological space X is a To-space if and only if {x} = 7y- )
x = y where x and y are points in X.
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Remark A.13 Let X be a topological space.

1. X is second countable ==: X is first countable.

2. X is a T4-space ==* X is a T3 -space == X is Hausdorff ==* X
is a T1 -space ==* X is a To-space.

By Theorem A.13 (1) we can write limox 0 for the unique limit of a
convergent net {x.} in a Hausdorff space. If we confine our attention
to first countable spaces, we find the following:

Remark A.14 At a point x in a first countable space, there is a count-
able local base B3 = {Bi : i E N} such that B+ I C B1 V i E N.

Proposition A.1 Let X be a first countable topological space and let
x E X be a limit of an arbitrary convergent net KID in X. Then there
is a sequence {zx : i E NJ c {Ar(a) : a E D} that converges to x.

In any topological space, F is closed €= every convergent net in F has
its limit in F ==* every convergent sequence in F has its limit in F.
In first countable spaces, then, the last implication becomes an equiva-
lence; hence sequence convergence alone is definitive of the topology in
first countable spaces. Theorem A.14 summarizes the main properties
of first countable spaces and should be compared with Theorem A.10.

Theorem A.14 Let X be a first countable topological space.

1. X is Hausdorff 4-=* each sequence in X has at most one limit.

2. If A c X, then x is a cluster point of A = there is a sequence
in A \ {x} that converges to x.

3. U C X is open -=ý for each sequence {x1} that converges to a
point of U all but at most finitely many of the xi lie in U.

4. A point x E X is a limit point of a sequence {xi} in X *=* {xj}
has a subsequence that converges to x.

5. If A C X, then x E if and only if there is a sequence in A that
converges to x.

6. A subset F of X is closed if and only if every convergent sequence
in F has its limit in F.

Thus sequence convergence is a fully adequate tool (i.e., net convergence
need not be considered) in first countable Hausdorff spaces.
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A.9.1 Metric Spaces

Definition A.22 Let X be a set of elements x, y, z,... and let d(x, V)
be a real valued function defined on X x X such that the following hold
for all x, y,z E X.

1. 0 < d(x, y) < oo.

2. d(x, Y) = 0 if and only if x = y.
S. d(x, y) = d~y, x).

4. d(x,z) < d(x,y) + d(y,z).

d is called a metric on X and the pair (X, d) is called a metric space.

Remark A.15 Let d be a metric on X, for x E X and f > 0 let

B,(x) _ {x' E X: d(x,x') < f),

and let B - {B,(x) : x E X and 0 < c < oo}. Then B is a base for a
topology on X called the metric topology of (X, d).

A.9.2 Metrizable Topological Spaces

Definition A.23 A topological space (X, 7) is said to be metrizable if
there ezists a metric d on X for which -r is the metric topology of (X,d).
Such a metric is said to be compatible with the given topology.

If X is a topological space, if A C B C X, and if A = B, then we say
that A is dense in B.

Theorem A.15 If X is a T, -space, then the following are equivalent.

I. X is regular and second countable.

2. X is metrizable and has a countable dense subset.

A.10 Continuity

Definition A.24 Let X and Y be topological spaces and let f be a
function defined on X with values in Y.

1. We say that f is continuous if f-`(U) = {x E X : f(x) E U} is
an open subset of X for all open subsets U of Y. We call f -(U)
the inverse image of U under f.

2. If f maps X one-to-one and onto Y and if f and f-` are con-
tinuous, we call f a homeomorphism and say that X and Y are
homeomorphic or topologically equivalent.
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Remark A.16 If f is a homeomorphism, then so is the inverse func-
tion f-'. If X and Y are homeomorphic spaces, then as abstract topo-
logical spaces they are indistinguishable.

Theorem A.16 Let f : X -. Y, where X and Y are topological

spaces. Then the following are equivalent.

1. f is continuous.

2. The inverse image under f of each closed subset of Y is a closed
subset of X.

S. The inverse image under f of each member of a subbase for the
topology of Y is an open subset of X.

4. For each net A( in X that converges to an x E X, the composition
net f oHA( in Y converges to f(x).

5. fR c f f(A) for each A c X.

6. f- 1 (B) C f-I(-W) for each B C Y.

Definition A.25 Let f : X - Y, where X and Y are topological
spaces. We say that f is continuous at x E X if the inverse image
under f of every neighborhood of f(x) is a neighborhood of x.

Theorem A.17 Let X and Y be topological spaces and let f be a func-
tion defined on X with values in Y.

1. f is continuous at x E X if and only if for each neighborhood U
of f(x) there is a neighborhood V of x such that f(V) C U.

2. f is continuous at x E X if and only if for each net A( in X that
converges to x the composition net f o AK in Y converges to f(z).

3. f is continuous if and only if f is continuous at all x E X.

In first countable spaces, the second claracterization above of local
continuity has the following more familiar form:

Corollary A.1 Let X and Y be first countable spaces, let f: X - Y,
and let x be a point in X. Then f is continuous at x if and only if
f(x1 ) - f(x) in Y for every sequence {xi} in X that converges to z.
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A.11 Relative Topologies

Definition A.26 If X is a topological space and A C X, then the
"relative" or "subspace" topology of A in X is the collection of B C A
such that B = A n U for some open U in X. The rlative topology of
A in X is also called the topology that A "inherits" from X.

Remark A.17 Let X be a topological space, let A C X, and let A have
the topology it inherits from X. If X is first (second) countable, then
A is first (second) countable. If X is Hausdorff, then so is A.

A.12 Compactness

Definition A.27 If X is a topological space, then a family of open sets
whose union contains a subset C of X is called an open cover of C. A
subcollection of an open cover of C that is itself an open cover of C
is naturally called a subcover. A cover (subcover) is called finite if the
number of its sets is finite.

1. If K is a subset of X and if each open cover of K has a finite
subcover, then we say that K is a compact subset of X.

2. X is called a compact space if X is a compact subset of itself.

S. We call X a locally compact space if every x E X has an open
neighborhood with compact closure.

4. An open subset U of X is called relatively compact if U is compact.

5. A locally compact, second countable Hausdorff space is sometimes
called an LCS space.

Remark A.18 If X is a topological space and K is a compact subset
of X, then K with its relative topology is a compact space.

Definition A.28 A family A of subsets of a set has the finite intersec-
tion property if every finite subfamily of A has a nonempty intersection.

Theorem A.18 The following results are classical:

1. A subset K of a topological space X is compact if and only if every
fami? of closed subsets of K with the finite intersection prop 9
ha-. nonempty intersection.

2. A closed subset of a compact set is compact, and a compact subset
of a Hausdorff space is closed.
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3. Thus if X is a compact space and F is a closed subset of X, then

F with its relative topology in X is a compact space.

4. Every sequence in a compact space has at least one limit point.
5. If X is a compact Hausdorff space or a second countable regular

space, then X is a normal space.

A.13 Product Topologies

Definition A.29 If X and Y are topological spaces, then the topology
on X x Y that is generated basically by the sets U x V (where U is
open in X and V is open in Y) is called the product topology; X x Y
is called a product space when it carries its product topology.

Remark A.19 Let X and Y be topological spaces and let {(xi,yi)} be
a sequence in X x Y. Then {x,} is a sequence in X, {yi} is a sequence
in Y, and {(xi, yi)} converges to (x, y) in the product space X x Y if
and only if xi -- x in X andy --- y in Y.

Remark A.20 Let X and Y be topological spaces and let {(x., y.)} be
a net in X x Y. Then {x,} is a net in X, {y.} is a net in Y, and
{(x., y,)} converges to (x, y) in the product space X x Y if and only if
{x.} converges to x in X and {y,,} converges to y in Y.

Remark A.21 Let X and Y be topological spaces and let X x Y be the

corresponding product space.

1. If X and Y are first (second) countable, then so is X x Y.
2. If X and Y are Hausdorff, then X x Y is Hausdorff.

3. If X and Y are (locally) compact, then so is X x Y.

For details not covered in this summary, consult Kelley (1955).
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